Mathematics
Mathematical Operators
Base.:-
— Method-(x)
Unary minus operator.
Examples
julia> -1
-1
julia> -(2)
-2
julia> -[1 2; 3 4]
2×2 Matrix{Int64}:
-1 -2
-3 -4
julia> -(true) # promotes to Int
-1
julia> -(0x003)
0xfffd
Base.:+
— Functiondt::Date + t::Time -> DateTime
The addition of a Date
with a Time
produces a DateTime
. The hour, minute, second, and millisecond parts of the Time
are used along with the year, month, and day of the Date
to create the new DateTime
. Non-zero microseconds or nanoseconds in the Time
type will result in an InexactError
being thrown.
+(x, y...)
Addition operator.
Infix x+y+z+...
calls this function with all arguments, i.e. +(x, y, z, ...)
, which by default then calls (x+y) + z + ...
starting from the left.
Note that overflow is possible for most integer types, including the default Int
, when adding large numbers.
Examples
julia> 1 + 20 + 4
25
julia> +(1, 20, 4)
25
julia> [1,2] + [3,4]
2-element Vector{Int64}:
4
6
julia> typemax(Int) + 1 < 0
true
Base.:-
— Method-(x, y)
Subtraction operator.
Examples
julia> 2 - 3
-1
julia> -(2, 4.5)
-2.5
Base.:*
— Method*(x, y...)
Multiplication operator.
Infix x*y*z*...
calls this function with all arguments, i.e. *(x, y, z, ...)
, which by default then calls (x*y) * z * ...
starting from the left.
Juxtaposition such as 2pi
also calls *(2, pi)
. Note that this operation has higher precedence than a literal *
. Note also that juxtaposition "0x..." (integer zero times a variable whose name starts with x
) is forbidden as it clashes with unsigned integer literals: 0x01 isa UInt8
.
Note that overflow is possible for most integer types, including the default Int
, when multiplying large numbers.
Examples
julia> 2 * 7 * 8
112
julia> *(2, 7, 8)
112
julia> [2 0; 0 3] * [1, 10] # matrix * vector
2-element Vector{Int64}:
2
30
julia> 1/2pi, 1/2*pi # juxtaposition has higher precedence
(0.15915494309189535, 1.5707963267948966)
julia> x = [1, 2]; x'x # adjoint vector * vector
5
Base.:/
— Function/(x, y)
Right division operator: multiplication of x
by the inverse of y
on the right.
Gives floating-point results for integer arguments. See ÷
for integer division, or //
for Rational
results.
Examples
julia> 1/2
0.5
julia> 4/2
2.0
julia> 4.5/2
2.25
A / B
Matrix right-division: A / B
is equivalent to (B' \ A')'
where \
is the left-division operator. For square matrices, the result X
is such that A == X*B
.
See also: rdiv!
.
Examples
julia> A = Float64[1 4 5; 3 9 2]; B = Float64[1 4 2; 3 4 2; 8 7 1];
julia> X = A / B
2×3 Matrix{Float64}:
-0.65 3.75 -1.2
3.25 -2.75 1.0
julia> isapprox(A, X*B)
true
julia> isapprox(X, A*pinv(B))
true
Base.:\
— Method\(x, y)
Left division operator: multiplication of y
by the inverse of x
on the left. Gives floating-point results for integer arguments.
Examples
julia> 3 \ 6
2.0
julia> inv(3) * 6
2.0
julia> A = [4 3; 2 1]; x = [5, 6];
julia> A \ x
2-element Vector{Float64}:
6.5
-7.0
julia> inv(A) * x
2-element Vector{Float64}:
6.5
-7.0
Base.:^
— Method^(x, y)
Exponentiation operator.
If x
and y
are integers, the result may overflow. To enter numbers in scientific notation, use Float64
literals such as 1.2e3
rather than 1.2 * 10^3
.
If y
is an Int
literal (e.g. 2
in x^2
or -3
in x^-3
), the Julia code x^y
is transformed by the compiler to Base.literal_pow(^, x, Val(y))
, to enable compile-time specialization on the value of the exponent. (As a default fallback we have Base.literal_pow(^, x, Val(y)) = ^(x,y)
, where usually ^ == Base.^
unless ^
has been defined in the calling namespace.) If y
is a negative integer literal, then Base.literal_pow
transforms the operation to inv(x)^-y
by default, where -y
is positive.
Examples
julia> 3^5
243
julia> 3^-1 # uses Base.literal_pow
0.3333333333333333
julia> p = -1;
julia> 3^p
ERROR: DomainError with -1:
Cannot raise an integer x to a negative power -1.
[...]
julia> 3.0^p
0.3333333333333333
julia> 10^19 > 0 # integer overflow
false
julia> big(10)^19 == 1e19
true
Base.fma
— Functionfma(x, y, z)
Computes x*y+z
without rounding the intermediate result x*y
. On some systems this is significantly more expensive than x*y+z
. fma
is used to improve accuracy in certain algorithms. See muladd
.
Base.muladd
— Functionmuladd(x, y, z)
Combined multiply-add: computes x*y+z
, but allowing the add and multiply to be merged with each other or with surrounding operations for performance. For example, this may be implemented as an fma
if the hardware supports it efficiently. The result can be different on different machines and can also be different on the same machine due to constant propagation or other optimizations. See fma
.
Examples
julia> muladd(3, 2, 1)
7
julia> 3 * 2 + 1
7
muladd(A, y, z)
Combined multiply-add, A*y .+ z
, for matrix-matrix or matrix-vector multiplication. The result is always the same size as A*y
, but z
may be smaller, or a scalar.
These methods require Julia 1.6 or later.
Examples
julia> A=[1.0 2.0; 3.0 4.0]; B=[1.0 1.0; 1.0 1.0]; z=[0, 100];
julia> muladd(A, B, z)
2×2 Matrix{Float64}:
3.0 3.0
107.0 107.0
Base.inv
— Methodinv(x)
Return the multiplicative inverse of x
, such that x*inv(x)
or inv(x)*x
yields one(x)
(the multiplicative identity) up to roundoff errors.
If x
is a number, this is essentially the same as one(x)/x
, but for some types inv(x)
may be slightly more efficient.
Examples
julia> inv(2)
0.5
julia> inv(1 + 2im)
0.2 - 0.4im
julia> inv(1 + 2im) * (1 + 2im)
1.0 + 0.0im
julia> inv(2//3)
3//2
inv(::Missing)
requires at least Julia 1.2.
Base.div
— Functiondiv(x, y)
÷(x, y)
The quotient from Euclidean (integer) division. Generally equivalent to a mathematical operation x/y without a fractional part.
See also: cld
, fld
, rem
, divrem
.
Examples
julia> 9 ÷ 4
2
julia> -5 ÷ 3
-1
julia> 5.0 ÷ 2
2.0
julia> div.(-5:5, 3)'
1×11 adjoint(::Vector{Int64}) with eltype Int64:
-1 -1 -1 0 0 0 0 0 1 1 1
Base.div
— Methoddiv(x, y, r::RoundingMode=RoundToZero)
The quotient from Euclidean (integer) division. Computes x / y
, rounded to an integer according to the rounding mode r
. In other words, the quantity
round(x / y, r)
without any intermediate rounding.
The three-argument method taking a RoundingMode
requires Julia 1.4 or later.
See also fld
and cld
, which are special cases of this function.
RoundFromZero
requires at least Julia 1.9.
Examples:
julia> div(4, 3, RoundToZero) # Matches div(4, 3)
1
julia> div(4, 3, RoundDown) # Matches fld(4, 3)
1
julia> div(4, 3, RoundUp) # Matches cld(4, 3)
2
julia> div(5, 2, RoundNearest)
2
julia> div(5, 2, RoundNearestTiesAway)
3
julia> div(-5, 2, RoundNearest)
-2
julia> div(-5, 2, RoundNearestTiesAway)
-3
julia> div(-5, 2, RoundNearestTiesUp)
-2
julia> div(4, 3, RoundFromZero)
2
julia> div(-4, 3, RoundFromZero)
-2
Because div(x, y)
implements strictly correct truncated rounding based on the true value of floating-point numbers, unintuitive situations can arise. For example:
julia> div(6.0, 0.1)
59.0
julia> 6.0 / 0.1
60.0
julia> 6.0 / big(0.1)
59.99999999999999666933092612453056361837965690217069245739573412231113406246995
What is happening here is that the true value of the floating-point number written as 0.1
is slightly larger than the numerical value 1/10 while 6.0
represents the number 6 precisely. Therefore the true value of 6.0 / 0.1
is slightly less than 60. When doing division, this is rounded to precisely 60.0
, but div(6.0, 0.1, RoundToZero)
always truncates the true value, so the result is 59.0
.
Base.fld
— Functionfld(x, y)
Largest integer less than or equal to x / y
. Equivalent to div(x, y, RoundDown)
.
Examples
julia> fld(7.3, 5.5)
1.0
julia> fld.(-5:5, 3)'
1×11 adjoint(::Vector{Int64}) with eltype Int64:
-2 -2 -1 -1 -1 0 0 0 1 1 1
Because fld(x, y)
implements strictly correct floored rounding based on the true value of floating-point numbers, unintuitive situations can arise. For example:
julia> fld(6.0, 0.1)
59.0
julia> 6.0 / 0.1
60.0
julia> 6.0 / big(0.1)
59.99999999999999666933092612453056361837965690217069245739573412231113406246995
What is happening here is that the true value of the floating-point number written as 0.1
is slightly larger than the numerical value 1/10 while 6.0
represents the number 6 precisely. Therefore the true value of 6.0 / 0.1
is slightly less than 60. When doing division, this is rounded to precisely 60.0
, but fld(6.0, 0.1)
always takes the floor of the true value, so the result is 59.0
.
Base.cld
— Functioncld(x, y)
Smallest integer larger than or equal to x / y
. Equivalent to div(x, y, RoundUp)
.
Examples
julia> cld(5.5, 2.2)
3.0
julia> cld.(-5:5, 3)'
1×11 adjoint(::Vector{Int64}) with eltype Int64:
-1 -1 -1 0 0 0 1 1 1 2 2
Base.mod
— Functionrem(x::Integer, T::Type{<:Integer}) -> T
mod(x::Integer, T::Type{<:Integer}) -> T
%(x::Integer, T::Type{<:Integer}) -> T
Find y::T
such that x
≡ y
(mod n), where n is the number of integers representable in T
, and y
is an integer in [typemin(T),typemax(T)]
. If T
can represent any integer (e.g. T == BigInt
), then this operation corresponds to a conversion to T
.
Examples
julia> x = 129 % Int8
-127
julia> typeof(x)
Int8
julia> x = 129 % BigInt
129
julia> typeof(x)
BigInt
mod(x, y)
rem(x, y, RoundDown)
The reduction of x
modulo y
, or equivalently, the remainder of x
after floored division by y
, i.e. x - y*fld(x,y)
if computed without intermediate rounding.
The result will have the same sign as y
, and magnitude less than abs(y)
(with some exceptions, see note below).
When used with floating point values, the exact result may not be representable by the type, and so rounding error may occur. In particular, if the exact result is very close to y
, then it may be rounded to y
.
See also: rem
, div
, fld
, mod1
, invmod
.
julia> mod(8, 3)
2
julia> mod(9, 3)
0
julia> mod(8.9, 3)
2.9000000000000004
julia> mod(eps(), 3)
2.220446049250313e-16
julia> mod(-eps(), 3)
3.0
julia> mod.(-5:5, 3)'
1×11 adjoint(::Vector{Int64}) with eltype Int64:
1 2 0 1 2 0 1 2 0 1 2
mod(x::Integer, r::AbstractUnitRange)
Find y
in the range r
such that x
≡ y
(mod n
), where n = length(r)
, i.e. y = mod(x - first(r), n) + first(r)
.
See also mod1
.
Examples
julia> mod(0, Base.OneTo(3)) # mod1(0, 3)
3
julia> mod(3, 0:2) # mod(3, 3)
0
This method requires at least Julia 1.3.
Base.rem
— Functionrem(x, y)
%(x, y)
Remainder from Euclidean division, returning a value of the same sign as x
, and smaller in magnitude than y
. This value is always exact.
See also: div
, mod
, mod1
, divrem
.
Examples
julia> x = 15; y = 4;
julia> x % y
3
julia> x == div(x, y) * y + rem(x, y)
true
julia> rem.(-5:5, 3)'
1×11 adjoint(::Vector{Int64}) with eltype Int64:
-2 -1 0 -2 -1 0 1 2 0 1 2
Base.rem
— Methodrem(x, y, r::RoundingMode=RoundToZero)
Compute the remainder of x
after integer division by y
, with the quotient rounded according to the rounding mode r
. In other words, the quantity
x - y * round(x / y, r)
without any intermediate rounding.
if
r == RoundNearest
, then the result is exact, and in the interval $[-|y| / 2, |y| / 2]$. See alsoRoundNearest
.if
r == RoundToZero
(default), then the result is exact, and in the interval $[0, |y|)$ ifx
is positive, or $(-|y|, 0]$ otherwise. See alsoRoundToZero
.if
r == RoundDown
, then the result is in the interval $[0, y)$ ify
is positive, or $(y, 0]$ otherwise. The result may not be exact ifx
andy
have different signs, andabs(x) < abs(y)
. See alsoRoundDown
.if
r == RoundUp
, then the result is in the interval $(-y, 0]$ ify
is positive, or $[0, -y)$ otherwise. The result may not be exact ifx
andy
have the same sign, andabs(x) < abs(y)
. See alsoRoundUp
.if
r == RoundFromZero
, then the result is in the interval $(-y, 0]$ ify
is positive, or $[0, -y)$ otherwise. The result may not be exact ifx
andy
have the same sign, andabs(x) < abs(y)
. See alsoRoundFromZero
.
RoundFromZero
requires at least Julia 1.9.
Examples:
julia> x = 9; y = 4;
julia> x % y # same as rem(x, y)
1
julia> x ÷ y # same as div(x, y)
2
julia> x == div(x, y) * y + rem(x, y)
true
Base.Math.rem2pi
— Functionrem2pi(x, r::RoundingMode)
Compute the remainder of x
after integer division by 2π
, with the quotient rounded according to the rounding mode r
. In other words, the quantity
x - 2π*round(x/(2π),r)
without any intermediate rounding. This internally uses a high precision approximation of 2π, and so will give a more accurate result than rem(x,2π,r)
if
r == RoundNearest
, then the result is in the interval $[-π, π]$. This will generally be the most accurate result. See alsoRoundNearest
.if
r == RoundToZero
, then the result is in the interval $[0, 2π]$ ifx
is positive,. or $[-2π, 0]$ otherwise. See alsoRoundToZero
.if
r == RoundDown
, then the result is in the interval $[0, 2π]$. See alsoRoundDown
.if
r == RoundUp
, then the result is in the interval $[-2π, 0]$. See alsoRoundUp
.
Examples
julia> rem2pi(7pi/4, RoundNearest)
-0.7853981633974485
julia> rem2pi(7pi/4, RoundDown)
5.497787143782138
Base.Math.mod2pi
— Functionmod2pi(x)
Modulus after division by 2π
, returning in the range $[0,2π)$.
This function computes a floating point representation of the modulus after division by numerically exact 2π
, and is therefore not exactly the same as mod(x,2π)
, which would compute the modulus of x
relative to division by the floating-point number 2π
.
Depending on the format of the input value, the closest representable value to 2π may be less than 2π. For example, the expression mod2pi(2π)
will not return 0
, because the intermediate value of 2*π
is a Float64
and 2*Float64(π) < 2*big(π)
. See rem2pi
for more refined control of this behavior.
Examples
julia> mod2pi(9*pi/4)
0.7853981633974481
Base.divrem
— Functiondivrem(x, y, r::RoundingMode=RoundToZero)
The quotient and remainder from Euclidean division. Equivalent to (div(x, y, r), rem(x, y, r))
. Equivalently, with the default value of r
, this call is equivalent to (x ÷ y, x % y)
.
Examples
julia> divrem(3, 7)
(0, 3)
julia> divrem(7, 3)
(2, 1)
Base.fldmod
— Functionfldmod(x, y)
The floored quotient and modulus after division. A convenience wrapper for divrem(x, y, RoundDown)
. Equivalent to (fld(x, y), mod(x, y))
.
Base.fld1
— Functionfld1(x, y)
Flooring division, returning a value consistent with mod1(x,y)
Examples
julia> x = 15; y = 4;
julia> fld1(x, y)
4
julia> x == fld(x, y) * y + mod(x, y)
true
julia> x == (fld1(x, y) - 1) * y + mod1(x, y)
true
Base.mod1
— Functionmod1(x, y)
Modulus after flooring division, returning a value r
such that mod(r, y) == mod(x, y)
in the range $(0, y]$ for positive y
and in the range $[y,0)$ for negative y
.
With integer arguments and positive y
, this is equal to mod(x, 1:y)
, and hence natural for 1-based indexing. By comparison, mod(x, y) == mod(x, 0:y-1)
is natural for computations with offsets or strides.
Examples
julia> mod1(4, 2)
2
julia> mod1.(-5:5, 3)'
1×11 adjoint(::Vector{Int64}) with eltype Int64:
1 2 3 1 2 3 1 2 3 1 2
julia> mod1.([-0.1, 0, 0.1, 1, 2, 2.9, 3, 3.1]', 3)
1×8 Matrix{Float64}:
2.9 3.0 0.1 1.0 2.0 2.9 3.0 0.1
Base.fldmod1
— FunctionBase.://
— Function//(num, den)
Divide two integers or rational numbers, giving a Rational
result. More generally, //
can be used for exact rational division of other numeric types with integer or rational components, such as complex numbers with integer components.
Note that floating-point (AbstractFloat
) arguments are not permitted by //
(even if the values are rational). The arguments must be subtypes of Integer
, Rational
, or composites thereof.
Examples
julia> 3 // 5
3//5
julia> (3 // 5) // (2 // 1)
3//10
julia> (1+2im) // (3+4im)
11//25 + 2//25*im
julia> 1.0 // 2
ERROR: MethodError: no method matching //(::Float64, ::Int64)
[...]
Base.rationalize
— Functionrationalize([T<:Integer=Int,] x; tol::Real=eps(x))
Approximate floating point number x
as a Rational
number with components of the given integer type. The result will differ from x
by no more than tol
.
Examples
julia> rationalize(5.6)
28//5
julia> a = rationalize(BigInt, 10.3)
103//10
julia> typeof(numerator(a))
BigInt
Base.numerator
— Functionnumerator(x)
Numerator of the rational representation of x
.
Examples
julia> numerator(2//3)
2
julia> numerator(4)
4
Base.denominator
— Functiondenominator(x)
Denominator of the rational representation of x
.
Examples
julia> denominator(2//3)
3
julia> denominator(4)
1
Base.:<<
— Function<<(B::BitVector, n) -> BitVector
Left bit shift operator, B << n
. For n >= 0
, the result is B
with elements shifted n
positions backwards, filling with false
values. If n < 0
, elements are shifted forwards. Equivalent to B >> -n
.
Examples
julia> B = BitVector([true, false, true, false, false])
5-element BitVector:
1
0
1
0
0
julia> B << 1
5-element BitVector:
0
1
0
0
0
julia> B << -1
5-element BitVector:
0
1
0
1
0
<<(x, n)
Left bit shift operator, x << n
. For n >= 0
, the result is x
shifted left by n
bits, filling with 0
s. This is equivalent to x * 2^n
. For n < 0
, this is equivalent to x >> -n
.
Examples
julia> Int8(3) << 2
12
julia> bitstring(Int8(3))
"00000011"
julia> bitstring(Int8(12))
"00001100"
Base.:>>
— Function>>(B::BitVector, n) -> BitVector
Right bit shift operator, B >> n
. For n >= 0
, the result is B
with elements shifted n
positions forward, filling with false
values. If n < 0
, elements are shifted backwards. Equivalent to B << -n
.
Examples
julia> B = BitVector([true, false, true, false, false])
5-element BitVector:
1
0
1
0
0
julia> B >> 1
5-element BitVector:
0
1
0
1
0
julia> B >> -1
5-element BitVector:
0
1
0
0
0
>>(x, n)
Right bit shift operator, x >> n
. For n >= 0
, the result is x
shifted right by n
bits, filling with 0
s if x >= 0
, 1
s if x < 0
, preserving the sign of x
. This is equivalent to fld(x, 2^n)
. For n < 0
, this is equivalent to x << -n
.
Examples
julia> Int8(13) >> 2
3
julia> bitstring(Int8(13))
"00001101"
julia> bitstring(Int8(3))
"00000011"
julia> Int8(-14) >> 2
-4
julia> bitstring(Int8(-14))
"11110010"
julia> bitstring(Int8(-4))
"11111100"
Base.:>>>
— Function>>>(B::BitVector, n) -> BitVector
Unsigned right bitshift operator, B >>> n
. Equivalent to B >> n
. See >>
for details and examples.
>>>(x, n)
Unsigned right bit shift operator, x >>> n
. For n >= 0
, the result is x
shifted right by n
bits, filling with 0
s. For n < 0
, this is equivalent to x << -n
.
For Unsigned
integer types, this is equivalent to >>
. For Signed
integer types, this is equivalent to signed(unsigned(x) >> n)
.
Examples
julia> Int8(-14) >>> 2
60
julia> bitstring(Int8(-14))
"11110010"
julia> bitstring(Int8(60))
"00111100"
BigInt
s are treated as if having infinite size, so no filling is required and this is equivalent to >>
.
Base.bitrotate
— Functionbitrotate(x::Base.BitInteger, k::Integer)
bitrotate(x, k)
implements bitwise rotation. It returns the value of x
with its bits rotated left k
times. A negative value of k
will rotate to the right instead.
This function requires Julia 1.5 or later.
See also: <<
, circshift
, BitArray
.
julia> bitrotate(UInt8(114), 2)
0xc9
julia> bitstring(bitrotate(0b01110010, 2))
"11001001"
julia> bitstring(bitrotate(0b01110010, -2))
"10011100"
julia> bitstring(bitrotate(0b01110010, 8))
"01110010"
Base.::
— Function:expr
Quote an expression expr
, returning the abstract syntax tree (AST) of expr
. The AST may be of type Expr
, Symbol
, or a literal value. The syntax :identifier
evaluates to a Symbol
.
See also: Expr
, Symbol
, Meta.parse
Examples
julia> expr = :(a = b + 2*x)
:(a = b + 2x)
julia> sym = :some_identifier
:some_identifier
julia> value = :0xff
0xff
julia> typeof((expr, sym, value))
Tuple{Expr, Symbol, UInt8}
Base.range
— Functionrange(start, stop, length)
range(start, stop; length, step)
range(start; length, stop, step)
range(;start, length, stop, step)
Construct a specialized array with evenly spaced elements and optimized storage (an AbstractRange
) from the arguments. Mathematically a range is uniquely determined by any three of start
, step
, stop
and length
. Valid invocations of range are:
- Call
range
with any three ofstart
,step
,stop
,length
. - Call
range
with two ofstart
,stop
,length
. In this casestep
will be assumed to be positive one. If both arguments are Integers, aUnitRange
will be returned. - Call
range
with one ofstop
orlength
.start
andstep
will be assumed to be positive one.
To construct a descending range, specify a negative step size, e.g. range(5, 1; step = -1)
=> [5,4,3,2,1]. Otherwise, a stop
value less than the start
value, with the default step
of +1
, constructs an empty range. Empty ranges are normalized such that the stop
is one less than the start
, e.g. range(5, 1) == 5:4
.
See Extended Help for additional details on the returned type. See also logrange
for logarithmically spaced points.
Examples
julia> range(1, length=100)
1:100
julia> range(1, stop=100)
1:100
julia> range(1, step=5, length=100)
1:5:496
julia> range(1, step=5, stop=100)
1:5:96
julia> range(1, 10, length=101)
1.0:0.09:10.0
julia> range(1, 100, step=5)
1:5:96
julia> range(stop=10, length=5)
6:10
julia> range(stop=10, step=1, length=5)
6:1:10
julia> range(start=1, step=1, stop=10)
1:1:10
julia> range(; length = 10)
Base.OneTo(10)
julia> range(; stop = 6)
Base.OneTo(6)
julia> range(; stop = 6.5)
1.0:1.0:6.0
If length
is not specified and stop - start
is not an integer multiple of step
, a range that ends before stop
will be produced.
julia> range(1, 3.5, step=2)
1.0:2.0:3.0
Special care is taken to ensure intermediate values are computed rationally. To avoid this induced overhead, see the LinRange
constructor.
stop
as a positional argument requires at least Julia 1.1.
The versions without keyword arguments and start
as a keyword argument require at least Julia 1.7.
The versions with stop
as a sole keyword argument, or length
as a sole keyword argument require at least Julia 1.8.
Extended Help
range
will produce a Base.OneTo
when the arguments are Integers and
- Only
length
is provided - Only
stop
is provided
range
will produce a UnitRange
when the arguments are Integers and
- Only
start
andstop
are provided - Only
length
andstop
are provided
A UnitRange
is not produced if step
is provided even if specified as one.
Base.OneTo
— TypeBase.OneTo(n)
Define an AbstractUnitRange
that behaves like 1:n
, with the added distinction that the lower limit is guaranteed (by the type system) to be 1.
Base.StepRangeLen
— TypeStepRangeLen( ref::R, step::S, len, [offset=1]) where { R,S}
StepRangeLen{T,R,S}( ref::R, step::S, len, [offset=1]) where {T,R,S}
StepRangeLen{T,R,S,L}(ref::R, step::S, len, [offset=1]) where {T,R,S,L}
A range r
where r[i]
produces values of type T
(in the first form, T
is deduced automatically), parameterized by a ref
erence value, a step
, and the len
gth. By default ref
is the starting value r[1]
, but alternatively you can supply it as the value of r[offset]
for some other index 1 <= offset <= len
. The syntax a:b
or a:b:c
, where any of a
, b
, or c
are floating-point numbers, creates a StepRangeLen
.
The 4th type parameter L
requires at least Julia 1.7.
Base.logrange
— Functionlogrange(start, stop, length)
logrange(start, stop; length)
Construct a specialized array whose elements are spaced logarithmically between the given endpoints. That is, the ratio of successive elements is a constant, calculated from the length.
This is similar to geomspace
in Python. Unlike PowerRange
in Mathematica, you specify the number of elements not the ratio. Unlike logspace
in Python and Matlab, the start
and stop
arguments are always the first and last elements of the result, not powers applied to some base.
Examples
julia> logrange(10, 4000, length=3)
3-element Base.LogRange{Float64, Base.TwicePrecision{Float64}}:
10.0, 200.0, 4000.0
julia> ans[2] ≈ sqrt(10 * 4000) # middle element is the geometric mean
true
julia> range(10, 40, length=3)[2] ≈ (10 + 40)/2 # arithmetic mean
true
julia> logrange(1f0, 32f0, 11)
11-element Base.LogRange{Float32, Float64}:
1.0, 1.41421, 2.0, 2.82843, 4.0, 5.65685, 8.0, 11.3137, 16.0, 22.6274, 32.0
julia> logrange(1, 1000, length=4) ≈ 10 .^ (0:3)
true
See the LogRange
type for further details.
See also range
for linearly spaced points.
This function requires at least Julia 1.11.
Base.LogRange
— TypeLogRange{T}(start, stop, len) <: AbstractVector{T}
A range whose elements are spaced logarithmically between start
and stop
, with spacing controlled by len
. Returned by logrange
.
Like LinRange
, the first and last elements will be exactly those provided, but intermediate values may have small floating-point errors. These are calculated using the logs of the endpoints, which are stored on construction, often in higher precision than T
.
Examples
julia> logrange(1, 4, length=5)
5-element Base.LogRange{Float64, Base.TwicePrecision{Float64}}:
1.0, 1.41421, 2.0, 2.82843, 4.0
julia> Base.LogRange{Float16}(1, 4, 5)
5-element Base.LogRange{Float16, Float64}:
1.0, 1.414, 2.0, 2.828, 4.0
julia> logrange(1e-310, 1e-300, 11)[1:2:end]
6-element Vector{Float64}:
1.0e-310
9.999999999999974e-309
9.999999999999981e-307
9.999999999999988e-305
9.999999999999994e-303
1.0e-300
julia> prevfloat(1e-308, 5) == ans[2]
true
Note that integer eltype T
is not allowed. Use for instance round.(Int, xs)
, or explicit powers of some integer base:
julia> xs = logrange(1, 512, 4)
4-element Base.LogRange{Float64, Base.TwicePrecision{Float64}}:
1.0, 8.0, 64.0, 512.0
julia> 2 .^ (0:3:9) |> println
[1, 8, 64, 512]
This type requires at least Julia 1.11.
Base.:==
— Function==(x, y)
Generic equality operator. Falls back to ===
. Should be implemented for all types with a notion of equality, based on the abstract value that an instance represents. For example, all numeric types are compared by numeric value, ignoring type. Strings are compared as sequences of characters, ignoring encoding. Collections of the same type generally compare their key sets, and if those are ==
, then compare the values for each of those keys, returning true if all such pairs are ==
. Other properties are typically not taken into account (such as the exact type).
This operator follows IEEE semantics for floating-point numbers: 0.0 == -0.0
and NaN != NaN
.
The result is of type Bool
, except when one of the operands is missing
, in which case missing
is returned (three-valued logic). Collections generally implement three-valued logic akin to all
, returning missing if any operands contain missing values and all other pairs are equal. Use isequal
or ===
to always get a Bool
result.
Implementation
New numeric types should implement this function for two arguments of the new type, and handle comparison to other types via promotion rules where possible.
Equality and hashing are intimately related; two values that are considered isequal
must have the same hash
and by default isequal
falls back to ==
. If a type customizes the behavior of ==
and/or isequal
, then hash
must be similarly implemented to ensure isequal
and hash
agree. Set
s, Dict
s, and many other internal implementations assume that this invariant holds.
If some type defines ==
, isequal
, and isless
then it should also implement <
to ensure consistency of comparisons.
Base.:!=
— Function!=(x)
Create a function that compares its argument to x
using !=
, i.e. a function equivalent to y -> y != x
. The returned function is of type Base.Fix2{typeof(!=)}
, which can be used to implement specialized methods.
This functionality requires at least Julia 1.2.
!=(x, y)
≠(x,y)
Not-equals comparison operator. Always gives the opposite answer as ==
.
Implementation
New types should generally not implement this, and rely on the fallback definition !=(x,y) = !(x==y)
instead.
Examples
julia> 3 != 2
true
julia> "foo" ≠ "foo"
false
Core.:!==
— Function!==(x, y)
≢(x,y)
Always gives the opposite answer as ===
.
Examples
julia> a = [1, 2]; b = [1, 2];
julia> a ≢ b
true
julia> a ≢ a
false
Base.:<
— Function<(x)
Create a function that compares its argument to x
using <
, i.e. a function equivalent to y -> y < x
. The returned function is of type Base.Fix2{typeof(<)}
, which can be used to implement specialized methods.
This functionality requires at least Julia 1.2.
<(x, y)
Less-than comparison operator. Falls back to isless
. Because of the behavior of floating-point NaN values, this operator implements a partial order.
Implementation
New types with a canonical partial order should implement this function for two arguments of the new type. Types with a canonical total order should implement isless
instead.
See also isunordered
.
Examples
julia> 'a' < 'b'
true
julia> "abc" < "abd"
true
julia> 5 < 3
false
Base.:<=
— Function<=(x)
Create a function that compares its argument to x
using <=
, i.e. a function equivalent to y -> y <= x
. The returned function is of type Base.Fix2{typeof(<=)}
, which can be used to implement specialized methods.
This functionality requires at least Julia 1.2.
<=(x, y)
≤(x,y)
Less-than-or-equals comparison operator. Falls back to (x < y) | (x == y)
.
Examples
julia> 'a' <= 'b'
true
julia> 7 ≤ 7 ≤ 9
true
julia> "abc" ≤ "abc"
true
julia> 5 <= 3
false
Base.:>
— Function>(x)
Create a function that compares its argument to x
using >
, i.e. a function equivalent to y -> y > x
. The returned function is of type Base.Fix2{typeof(>)}
, which can be used to implement specialized methods.
This functionality requires at least Julia 1.2.
>(x, y)
Greater-than comparison operator. Falls back to y < x
.
Implementation
Generally, new types should implement <
instead of this function, and rely on the fallback definition >(x, y) = y < x
.
Examples
julia> 'a' > 'b'
false
julia> 7 > 3 > 1
true
julia> "abc" > "abd"
false
julia> 5 > 3
true
Base.:>=
— Function>=(x)
Create a function that compares its argument to x
using >=
, i.e. a function equivalent to y -> y >= x
. The returned function is of type Base.Fix2{typeof(>=)}
, which can be used to implement specialized methods.
This functionality requires at least Julia 1.2.
>=(x, y)
≥(x,y)
Greater-than-or-equals comparison operator. Falls back to y <= x
.
Examples
julia> 'a' >= 'b'
false
julia> 7 ≥ 7 ≥ 3
true
julia> "abc" ≥ "abc"
true
julia> 5 >= 3
true
Base.cmp
— Functioncmp(a::AbstractString, b::AbstractString) -> Int
Compare two strings. Return 0
if both strings have the same length and the character at each index is the same in both strings. Return -1
if a
is a prefix of b
, or if a
comes before b
in alphabetical order. Return 1
if b
is a prefix of a
, or if b
comes before a
in alphabetical order (technically, lexicographical order by Unicode code points).
Examples
julia> cmp("abc", "abc")
0
julia> cmp("ab", "abc")
-1
julia> cmp("abc", "ab")
1
julia> cmp("ab", "ac")
-1
julia> cmp("ac", "ab")
1
julia> cmp("α", "a")
1
julia> cmp("b", "β")
-1
cmp(<, x, y)
Return -1, 0, or 1 depending on whether x
is less than, equal to, or greater than y
, respectively. The first argument specifies a less-than comparison function to use.
cmp(x,y)
Return -1, 0, or 1 depending on whether x
is less than, equal to, or greater than y
, respectively. Uses the total order implemented by isless
.
Examples
julia> cmp(1, 2)
-1
julia> cmp(2, 1)
1
julia> cmp(2+im, 3-im)
ERROR: MethodError: no method matching isless(::Complex{Int64}, ::Complex{Int64})
[...]
Base.:~
— FunctionBase.:&
— Functionx & y
Bitwise and. Implements three-valued logic, returning missing
if one operand is missing
and the other is true
. Add parentheses for function application form: (&)(x, y)
.
Examples
julia> 4 & 10
0
julia> 4 & 12
4
julia> true & missing
missing
julia> false & missing
false
Base.:|
— Functionx | y
Bitwise or. Implements three-valued logic, returning missing
if one operand is missing
and the other is false
.
Examples
julia> 4 | 10
14
julia> 4 | 1
5
julia> true | missing
true
julia> false | missing
missing
Base.xor
— Functionxor(x, y)
⊻(x, y)
Bitwise exclusive or of x
and y
. Implements three-valued logic, returning missing
if one of the arguments is missing
.
The infix operation a ⊻ b
is a synonym for xor(a,b)
, and ⊻
can be typed by tab-completing \xor
or \veebar
in the Julia REPL.
Examples
julia> xor(true, false)
true
julia> xor(true, true)
false
julia> xor(true, missing)
missing
julia> false ⊻ false
false
julia> [true; true; false] .⊻ [true; false; false]
3-element BitVector:
0
1
0
Base.nand
— Functionnand(x, y)
⊼(x, y)
Bitwise nand (not and) of x
and y
. Implements three-valued logic, returning missing
if one of the arguments is missing
.
The infix operation a ⊼ b
is a synonym for nand(a,b)
, and ⊼
can be typed by tab-completing \nand
or \barwedge
in the Julia REPL.
Examples
julia> nand(true, false)
true
julia> nand(true, true)
false
julia> nand(true, missing)
missing
julia> false ⊼ false
true
julia> [true; true; false] .⊼ [true; false; false]
3-element BitVector:
0
1
1
Base.nor
— Functionnor(x, y)
⊽(x, y)
Bitwise nor (not or) of x
and y
. Implements three-valued logic, returning missing
if one of the arguments is missing
and the other is not true
.
The infix operation a ⊽ b
is a synonym for nor(a,b)
, and ⊽
can be typed by tab-completing \nor
or \barvee
in the Julia REPL.
Examples
julia> nor(true, false)
false
julia> nor(true, true)
false
julia> nor(true, missing)
false
julia> false ⊽ false
true
julia> false ⊽ missing
missing
julia> [true; true; false] .⊽ [true; false; false]
3-element BitVector:
0
0
1
Base.:!
— Function!f::Function
Predicate function negation: when the argument of !
is a function, it returns a composed function which computes the boolean negation of f
.
See also ∘
.
Examples
julia> str = "∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε"
"∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε"
julia> filter(isletter, str)
"εδxyδfxfyε"
julia> filter(!isletter, str)
"∀ > 0, ∃ > 0: |-| < ⇒ |()-()| < "
Starting with Julia 1.9, !f
returns a ComposedFunction
instead of an anonymous function.
!(x)
Boolean not. Implements three-valued logic, returning missing
if x
is missing
.
See also ~
for bitwise not.
Examples
julia> !true
false
julia> !false
true
julia> !missing
missing
julia> .![true false true]
1×3 BitMatrix:
0 1 0
&&
— Keywordx && y
Short-circuiting boolean AND.
This is equivalent to x ? y : false
: it returns false
if x
is false
and the result of evaluating y
if x
is true
. Note that if y
is an expression, it is only evaluated when x
is true
, which is called "short-circuiting" behavior.
Also, y
does not need to have a boolean value. This means that (condition) && (statement)
can be used as shorthand for if condition; statement; end
for an arbitrary statement
.
See also &
, the ternary operator ? :
, and the manual section on control flow.
Examples
julia> x = 3;
julia> x > 1 && x < 10 && x isa Int
true
julia> x < 0 && error("expected positive x")
false
julia> x > 0 && "not a boolean"
"not a boolean"
||
— Keywordx || y
Short-circuiting boolean OR.
This is equivalent to x ? true : y
: it returns true
if x
is true
and the result of evaluating y
if x
is false
. Note that if y
is an expression, it is only evaluated when x
is false
, which is called "short-circuiting" behavior.
Also, y
does not need to have a boolean value. This means that (condition) || (statement)
can be used as shorthand for if !(condition); statement; end
for an arbitrary statement
.
Examples
julia> pi < 3 || ℯ < 3
true
julia> false || true || println("neither is true!")
true
julia> pi < 3 || "not a boolean"
"not a boolean"
Mathematical Functions
Base.isapprox
— Functionisapprox(x; kwargs...) / ≈(x; kwargs...)
Create a function that compares its argument to x
using ≈
, i.e. a function equivalent to y -> y ≈ x
.
The keyword arguments supported here are the same as those in the 2-argument isapprox
.
This method requires Julia 1.5 or later.
isapprox(x, y; atol::Real=0, rtol::Real=atol>0 ? 0 : √eps, nans::Bool=false[, norm::Function])
Inexact equality comparison. Two numbers compare equal if their relative distance or their absolute distance is within tolerance bounds: isapprox
returns true
if norm(x-y) <= max(atol, rtol*max(norm(x), norm(y)))
. The default atol
(absolute tolerance) is zero and the default rtol
(relative tolerance) depends on the types of x
and y
. The keyword argument nans
determines whether or not NaN values are considered equal (defaults to false).
For real or complex floating-point values, if an atol > 0
is not specified, rtol
defaults to the square root of eps
of the type of x
or y
, whichever is bigger (least precise). This corresponds to requiring equality of about half of the significant digits. Otherwise, e.g. for integer arguments or if an atol > 0
is supplied, rtol
defaults to zero.
The norm
keyword defaults to abs
for numeric (x,y)
and to LinearAlgebra.norm
for arrays (where an alternative norm
choice is sometimes useful). When x
and y
are arrays, if norm(x-y)
is not finite (i.e. ±Inf
or NaN
), the comparison falls back to checking whether all elements of x
and y
are approximately equal component-wise.
The binary operator ≈
is equivalent to isapprox
with the default arguments, and x ≉ y
is equivalent to !isapprox(x,y)
.
Note that x ≈ 0
(i.e., comparing to zero with the default tolerances) is equivalent to x == 0
since the default atol
is 0
. In such cases, you should either supply an appropriate atol
(or use norm(x) ≤ atol
) or rearrange your code (e.g. use x ≈ y
rather than x - y ≈ 0
). It is not possible to pick a nonzero atol
automatically because it depends on the overall scaling (the "units") of your problem: for example, in x - y ≈ 0
, atol=1e-9
is an absurdly small tolerance if x
is the radius of the Earth in meters, but an absurdly large tolerance if x
is the radius of a Hydrogen atom in meters.
Passing the norm
keyword argument when comparing numeric (non-array) arguments requires Julia 1.6 or later.
Examples
julia> isapprox(0.1, 0.15; atol=0.05)
true
julia> isapprox(0.1, 0.15; rtol=0.34)
true
julia> isapprox(0.1, 0.15; rtol=0.33)
false
julia> 0.1 + 1e-10 ≈ 0.1
true
julia> 1e-10 ≈ 0
false
julia> isapprox(1e-10, 0, atol=1e-8)
true
julia> isapprox([10.0^9, 1.0], [10.0^9, 2.0]) # using `norm`
true
Base.sin
— Methodsin(x::T) where {T <: Number} -> float(T)
Compute sine of x
, where x
is in radians.
Throw a DomainError
if isinf(x)
, return a T(NaN)
if isnan(x)
.
See also sind
, sinpi
, sincos
, cis
, asin
.
Examples
julia> round.(sin.(range(0, 2pi, length=9)'), digits=3)
1×9 Matrix{Float64}:
0.0 0.707 1.0 0.707 0.0 -0.707 -1.0 -0.707 -0.0
julia> sind(45)
0.7071067811865476
julia> sinpi(1/4)
0.7071067811865475
julia> round.(sincos(pi/6), digits=3)
(0.5, 0.866)
julia> round(cis(pi/6), digits=3)
0.866 + 0.5im
julia> round(exp(im*pi/6), digits=3)
0.866 + 0.5im
Base.cos
— Methodcos(x::T) where {T <: Number} -> float(T)
Compute cosine of x
, where x
is in radians.
Throw a DomainError
if isinf(x)
, return a T(NaN)
if isnan(x)
.
Base.Math.sincos
— Methodsincos(x::T) where T -> Tuple{float(T),float(T)}
Simultaneously compute the sine and cosine of x
, where x
is in radians, returning a tuple (sine, cosine)
.
Throw a DomainError
if isinf(x)
, return a (T(NaN), T(NaN))
if isnan(x)
.
Base.tan
— Methodtan(x::T) where {T <: Number} -> float(T)
Compute tangent of x
, where x
is in radians.
Throw a DomainError
if isinf(x)
, return a T(NaN)
if isnan(x)
.
See also tanh
.
Base.Math.sind
— Functionsind(x::T) where T -> float(T)
Compute sine of x
, where x
is in degrees. If x
is a matrix, x
needs to be a square matrix.
Throw a DomainError
if isinf(x)
, return a T(NaN)
if isnan(x)
.
Matrix arguments require Julia 1.7 or later.
Base.Math.cosd
— Functioncosd(x::T) where T -> float(T)
Compute cosine of x
, where x
is in degrees. If x
is a matrix, x
needs to be a square matrix.
Throw a DomainError
if isinf(x)
, return a T(NaN)
if isnan(x)
.
Matrix arguments require Julia 1.7 or later.
Base.Math.tand
— Functiontand(x::T) where T -> float(T)
Compute tangent of x
, where x
is in degrees. If x
is a matrix, x
needs to be a square matrix.
Throw a DomainError
if isinf(x)
, return a T(NaN)
if isnan(x)
.
Matrix arguments require Julia 1.7 or later.
Base.Math.sincosd
— Functionsincosd(x::T) where T -> Tuple{float(T),float(T)}
Simultaneously compute the sine and cosine of x
, where x
is in degrees, returning a tuple (sine, cosine)
.
Throw a DomainError
if isinf(x)
, return a (T(NaN), T(NaN))
tuple if isnan(x)
.
This function requires at least Julia 1.3.
Base.Math.sinpi
— Functionsinpi(x::T) where T -> float(T)
Compute $\sin(\pi x)$ more accurately than sin(pi*x)
, especially for large x
.
Throw a DomainError
if isinf(x)
, return a T(NaN)
if isnan(x)
.
Base.Math.cospi
— Functioncospi(x::T) where T -> float(T)
Compute $\cos(\pi x)$ more accurately than cos(pi*x)
, especially for large x
.
Throw a DomainError
if isinf(x)
, return a T(NaN)
if isnan(x)
.
Base.Math.tanpi
— Functiontanpi(x::T) where T -> float(T)
Compute $\tan(\pi x)$ more accurately than tan(pi*x)
, especially for large x
.
Throw a DomainError
if isinf(x)
, return a T(NaN)
if isnan(x)
.
This function requires at least Julia 1.10.
Base.Math.sincospi
— Functionsincospi(x::T) where T -> Tuple{float(T),float(T)}
Simultaneously compute sinpi(x)
and cospi(x)
(the sine and cosine of π*x
, where x
is in radians), returning a tuple (sine, cosine)
.
Throw a DomainError
if isinf(x)
, return a (T(NaN), T(NaN))
tuple if isnan(x)
.
This function requires Julia 1.6 or later.
Base.sinh
— MethodBase.cosh
— MethodBase.tanh
— Methodtanh(x)
Compute hyperbolic tangent of x
.
Examples
julia> tanh.(-3:3f0) # Here 3f0 isa Float32
7-element Vector{Float32}:
-0.9950548
-0.9640276
-0.7615942
0.0
0.7615942
0.9640276
0.9950548
julia> tan.(im .* (1:3))
3-element Vector{ComplexF64}:
0.0 + 0.7615941559557649im
0.0 + 0.9640275800758169im
0.0 + 0.9950547536867306im
Base.asin
— Methodasin(x::T) where {T <: Number} -> float(T)
Compute the inverse sine of x
, where the output is in radians.
Return a T(NaN)
if isnan(x)
.
See also asind
for output in degrees.
Examples
julia> asin.((0, 1/2, 1))
(0.0, 0.5235987755982989, 1.5707963267948966)
julia> asind.((0, 1/2, 1))
(0.0, 30.000000000000004, 90.0)
Base.acos
— Methodacos(x::T) where {T <: Number} -> float(T)
Compute the inverse cosine of x
, where the output is in radians
Return a T(NaN)
if isnan(x)
.
Base.atan
— Methodatan(y)
atan(y, x)
Compute the inverse tangent of y
or y/x
, respectively.
For one real argument, this is the angle in radians between the positive x-axis and the point (1, y), returning a value in the interval $[-\pi/2, \pi/2]$.
For two arguments, this is the angle in radians between the positive x-axis and the point (x, y), returning a value in the interval $[-\pi, \pi]$. This corresponds to a standard atan2
function. Note that by convention atan(0.0,x)
is defined as $\pi$ and atan(-0.0,x)
is defined as $-\pi$ when x < 0
.
See also atand
for degrees.
Examples
julia> rad2deg(atan(-1/√3))
-30.000000000000004
julia> rad2deg(atan(-1, √3))
-30.000000000000004
julia> rad2deg(atan(1, -√3))
150.0
Base.Math.asind
— Functionasind(x)
Compute the inverse sine of x
, where the output is in degrees. If x
is a matrix, x
needs to be a square matrix.
Matrix arguments require Julia 1.7 or later.
Base.Math.acosd
— Functionacosd(x)
Compute the inverse cosine of x
, where the output is in degrees. If x
is a matrix, x
needs to be a square matrix.
Matrix arguments require Julia 1.7 or later.
Base.Math.atand
— Functionatand(y::T) where T -> float(T)
atand(y::T, x::S) where {T,S} -> promote_type(T,S)
atand(y::AbstractMatrix{T}) where T -> AbstractMatrix{Complex{float(T)}}
Compute the inverse tangent of y
or y/x
, respectively, where the output is in degrees.
Return a NaN
if isnan(y)
or isnan(x)
. The returned NaN
is either a T
in the single argument version, or a promote_type(T,S)
in the two argument version.
The one-argument method supports square matrix arguments as of Julia 1.7.
Base.Math.sec
— Methodsec(x::T) where {T <: Number} -> float(T)
Compute the secant of x
, where x
is in radians.
Throw a DomainError
if isinf(x)
, return a T(NaN)
if isnan(x)
.
Base.Math.csc
— Methodcsc(x::T) where {T <: Number} -> float(T)
Compute the cosecant of x
, where x
is in radians.
Throw a DomainError
if isinf(x)
, return a T(NaN)
if isnan(x)
.
Base.Math.cot
— Methodcot(x::T) where {T <: Number} -> float(T)
Compute the cotangent of x
, where x
is in radians.
Throw a DomainError
if isinf(x)
, return a T(NaN)
if isnan(x)
.
Base.Math.secd
— Functionsecd(x::T) where {T <: Number} -> float(T)
Compute the secant of x
, where x
is in degrees.
Throw a DomainError
if isinf(x)
, return a T(NaN)
if isnan(x)
.
Base.Math.cscd
— Functioncscd(x::T) where {T <: Number} -> float(T)
Compute the cosecant of x
, where x
is in degrees.
Throw a DomainError
if isinf(x)
, return a T(NaN)
if isnan(x)
.
Base.Math.cotd
— Functioncotd(x::T) where {T <: Number} -> float(T)
Compute the cotangent of x
, where x
is in degrees.
Throw a DomainError
if isinf(x)
, return a T(NaN)
if isnan(x)
.
Base.Math.asec
— Methodasec(x::T) where {T <: Number} -> float(T)
Compute the inverse secant of x
, where the output is in radians.
Base.Math.acsc
— Methodacsc(x::T) where {T <: Number} -> float(T)
Compute the inverse cosecant of x
, where the output is in radians.
Base.Math.acot
— Methodacot(x::T) where {T <: Number} -> float(T)
Compute the inverse cotangent of x
, where the output is in radians.
Base.Math.asecd
— Functionasecd(x)
Compute the inverse secant of x
, where the output is in degrees. If x
is a matrix, x
needs to be a square matrix.
Matrix arguments require Julia 1.7 or later.
Base.Math.acscd
— Functionacscd(x)
Compute the inverse cosecant of x
, where the output is in degrees. If x
is a matrix, x
needs to be a square matrix.
Matrix arguments require Julia 1.7 or later.
Base.Math.acotd
— Functionacotd(x)
Compute the inverse cotangent of x
, where the output is in degrees. If x
is a matrix, x
needs to be a square matrix.
Matrix arguments require Julia 1.7 or later.
Base.Math.sech
— Methodsech(x::T) where {T <: Number} -> float(T)
Compute the hyperbolic secant of x
.
Return a T(NaN)
if isnan(x)
.
Base.Math.csch
— Methodcsch(x::T) where {T <: Number} -> float(T)
Compute the hyperbolic cosecant of x
.
Return a T(NaN)
if isnan(x)
.
Base.Math.coth
— Methodcoth(x::T) where {T <: Number} -> float(T)
Compute the hyperbolic cotangent of x
.
Return a T(NaN)
if isnan(x)
.
Base.asinh
— Methodasinh(x)
Compute the inverse hyperbolic sine of x
.
Base.acosh
— Methodacosh(x)
Compute the inverse hyperbolic cosine of x
.
Base.atanh
— Methodatanh(x)
Compute the inverse hyperbolic tangent of x
.
Base.Math.asech
— Methodasech(x::T) where {T <: Number} -> float(T)
Compute the inverse hyperbolic secant of x
.
Base.Math.acsch
— Methodacsch(x::T) where {T <: Number} -> float(T)
Compute the inverse hyperbolic cosecant of x
.
Base.Math.acoth
— Methodacoth(x::T) where {T <: Number} -> float(T)
Compute the inverse hyperbolic cotangent of x
.
Base.Math.sinc
— Functionsinc(x::T) where {T <: Number} -> float(T)
Compute normalized sinc function $\operatorname{sinc}(x) = \sin(\pi x) / (\pi x)$ if $x \neq 0$, and $1$ if $x = 0$.
Return a T(NaN)
if isnan(x)
.
See also cosc
, its derivative.
Base.Math.cosc
— Functioncosc(x::T) where {T <: Number} -> float(T)
Compute $\cos(\pi x) / x - \sin(\pi x) / (\pi x^2)$ if $x \neq 0$, and $0$ if $x = 0$. This is the derivative of sinc(x)
.
Return a T(NaN)
if isnan(x)
.
See also sinc
.
Base.Math.deg2rad
— Functiondeg2rad(x)
Convert x
from degrees to radians.
Examples
julia> deg2rad(90)
1.5707963267948966
Base.Math.rad2deg
— FunctionBase.Math.hypot
— Functionhypot(x, y)
Compute the hypotenuse $\sqrt{|x|^2+|y|^2}$ avoiding overflow and underflow.
This code is an implementation of the algorithm described in: An Improved Algorithm for hypot(a,b)
by Carlos F. Borges The article is available online at arXiv at the link https://arxiv.org/abs/1904.09481
hypot(x...)
Compute the hypotenuse $\sqrt{\sum |x_i|^2}$ avoiding overflow and underflow.
See also norm
in the LinearAlgebra
standard library.
Examples
julia> a = Int64(10)^10;
julia> hypot(a, a)
1.4142135623730951e10
julia> √(a^2 + a^2) # a^2 overflows
ERROR: DomainError with -2.914184810805068e18:
sqrt was called with a negative real argument but will only return a complex result if called with a complex argument. Try sqrt(Complex(x)).
Stacktrace:
[...]
julia> hypot(3, 4im)
5.0
julia> hypot(-5.7)
5.7
julia> hypot(3, 4im, 12.0)
13.0
julia> using LinearAlgebra
julia> norm([a, a, a, a]) == hypot(a, a, a, a)
true
Base.log
— Methodlog(x)
Compute the natural logarithm of x
.
Throw a DomainError
for negative Real
arguments. Use Complex
arguments to obtain Complex
results.
log
has a branch cut along the negative real axis; -0.0im
is taken to be below the axis.
See also ℯ
, log1p
, log2
, log10
.
Examples
julia> log(2)
0.6931471805599453
julia> log(-3)
ERROR: DomainError with -3.0:
log was called with a negative real argument but will only return a complex result if called with a complex argument. Try log(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31
[...]
julia> log(-3 + 0im)
1.0986122886681098 + 3.141592653589793im
julia> log(-3 - 0.0im)
1.0986122886681098 - 3.141592653589793im
julia> log.(exp.(-1:1))
3-element Vector{Float64}:
-1.0
0.0
1.0
Base.log
— Methodlog(b,x)
Compute the base b
logarithm of x
. Throw a DomainError
for negative Real
arguments.
Examples
julia> log(4,8)
1.5
julia> log(4,2)
0.5
julia> log(-2, 3)
ERROR: DomainError with -2.0:
log was called with a negative real argument but will only return a complex result if called with a complex argument. Try log(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31
[...]
julia> log(2, -3)
ERROR: DomainError with -3.0:
log was called with a negative real argument but will only return a complex result if called with a complex argument. Try log(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31
[...]
Base.log2
— Functionlog2(x)
Compute the logarithm of x
to base 2. Throw a DomainError
for negative Real
arguments.
See also: exp2
, ldexp
, ispow2
.
Examples
julia> log2(4)
2.0
julia> log2(10)
3.321928094887362
julia> log2(-2)
ERROR: DomainError with -2.0:
log2 was called with a negative real argument but will only return a complex result if called with a complex argument. Try log2(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(f::Symbol, x::Float64) at ./math.jl:31
[...]
julia> log2.(2.0 .^ (-1:1))
3-element Vector{Float64}:
-1.0
0.0
1.0
Base.log10
— Functionlog10(x)
Compute the logarithm of x
to base 10. Throw a DomainError
for negative Real
arguments.
Examples
julia> log10(100)
2.0
julia> log10(2)
0.3010299956639812
julia> log10(-2)
ERROR: DomainError with -2.0:
log10 was called with a negative real argument but will only return a complex result if called with a complex argument. Try log10(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(f::Symbol, x::Float64) at ./math.jl:31
[...]
Base.log1p
— Functionlog1p(x)
Accurate natural logarithm of 1+x
. Throw a DomainError
for Real
arguments less than -1.
Examples
julia> log1p(-0.5)
-0.6931471805599453
julia> log1p(0)
0.0
julia> log1p(-2)
ERROR: DomainError with -2.0:
log1p was called with a real argument < -1 but will only return a complex result if called with a complex argument. Try log1p(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31
[...]
Base.Math.frexp
— Functionfrexp(val)
Return (x,exp)
such that x
has a magnitude in the interval $[1/2, 1)$ or 0, and val
is equal to $x \times 2^{exp}$.
See also significand
, exponent
, ldexp
.
Examples
julia> frexp(6.0)
(0.75, 3)
julia> significand(6.0), exponent(6.0) # interval [1, 2) instead
(1.5, 2)
julia> frexp(0.0), frexp(NaN), frexp(-Inf) # exponent would give an error
((0.0, 0), (NaN, 0), (-Inf, 0))
Base.exp
— Methodexp(x)
Compute the natural base exponential of x
, in other words $ℯ^x$.
Examples
julia> exp(1.0)
2.718281828459045
julia> exp(im * pi) ≈ cis(pi)
true
Base.exp2
— Functionexp2(x)
Compute the base 2 exponential of x
, in other words $2^x$.
Examples
julia> exp2(5)
32.0
julia> 2^5
32
julia> exp2(63) > typemax(Int)
true
Base.exp10
— Functionexp10(x)
Compute the base 10 exponential of x
, in other words $10^x$.
Examples
julia> exp10(2)
100.0
julia> 10^2
100
Base.Math.ldexp
— FunctionBase.Math.modf
— Functionmodf(x)
Return a tuple (fpart, ipart)
of the fractional and integral parts of a number. Both parts have the same sign as the argument.
Examples
julia> modf(3.5)
(0.5, 3.0)
julia> modf(-3.5)
(-0.5, -3.0)
Base.expm1
— Functionexpm1(x)
Accurately compute $e^x-1$. It avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small values of x.
Examples
julia> expm1(1e-16)
1.0e-16
julia> exp(1e-16) - 1
0.0
Base.round
— Functionround([T,] x, [r::RoundingMode])
round(x, [r::RoundingMode]; digits::Integer=0, base = 10)
round(x, [r::RoundingMode]; sigdigits::Integer, base = 10)
Rounds the number x
.
Without keyword arguments, x
is rounded to an integer value, returning a value of type T
, or of the same type of x
if no T
is provided. An InexactError
will be thrown if the value is not representable by T
, similar to convert
.
If the digits
keyword argument is provided, it rounds to the specified number of digits after the decimal place (or before if negative), in base base
.
If the sigdigits
keyword argument is provided, it rounds to the specified number of significant digits, in base base
.
The RoundingMode
r
controls the direction of the rounding; the default is RoundNearest
, which rounds to the nearest integer, with ties (fractional values of 0.5) being rounded to the nearest even integer. Note that round
may give incorrect results if the global rounding mode is changed (see rounding
).
When rounding to a floating point type, will round to integers representable by that type (and Inf) rather than true integers. Inf is treated as one ulp greater than the floatmax(T)
for purposes of determining "nearest", similar to convert
.
Examples
julia> round(1.7)
2.0
julia> round(Int, 1.7)
2
julia> round(1.5)
2.0
julia> round(2.5)
2.0
julia> round(pi; digits=2)
3.14
julia> round(pi; digits=3, base=2)
3.125
julia> round(123.456; sigdigits=2)
120.0
julia> round(357.913; sigdigits=4, base=2)
352.0
julia> round(Float16, typemax(UInt128))
Inf16
julia> floor(Float16, typemax(UInt128))
Float16(6.55e4)
Rounding to specified digits in bases other than 2 can be inexact when operating on binary floating point numbers. For example, the Float64
value represented by 1.15
is actually less than 1.15, yet will be rounded to 1.2. For example:
julia> x = 1.15
1.15
julia> big(1.15)
1.149999999999999911182158029987476766109466552734375
julia> x < 115//100
true
julia> round(x, digits=1)
1.2
Extensions
To extend round
to new numeric types, it is typically sufficient to define Base.round(x::NewType, r::RoundingMode)
.
Base.Rounding.RoundingMode
— TypeRoundingMode
A type used for controlling the rounding mode of floating point operations (via rounding
/setrounding
functions), or as optional arguments for rounding to the nearest integer (via the round
function).
Currently supported rounding modes are:
RoundNearest
(default)RoundNearestTiesAway
RoundNearestTiesUp
RoundToZero
RoundFromZero
RoundUp
RoundDown
RoundFromZero
requires at least Julia 1.9. Prior versions support RoundFromZero
for BigFloat
s only.
Base.Rounding.RoundNearest
— ConstantRoundNearest
The default rounding mode. Rounds to the nearest integer, with ties (fractional values of 0.5) being rounded to the nearest even integer.
Base.Rounding.RoundNearestTiesAway
— ConstantRoundNearestTiesAway
Rounds to nearest integer, with ties rounded away from zero (C/C++ round
behaviour).
Base.Rounding.RoundNearestTiesUp
— ConstantRoundNearestTiesUp
Rounds to nearest integer, with ties rounded toward positive infinity (Java/JavaScript round
behaviour).
Base.Rounding.RoundToZero
— ConstantBase.Rounding.RoundFromZero
— ConstantRoundFromZero
Rounds away from zero.
RoundFromZero
requires at least Julia 1.9. Prior versions support RoundFromZero
for BigFloat
s only.
Examples
julia> BigFloat("1.0000000000000001", 5, RoundFromZero)
1.06
Base.Rounding.RoundUp
— ConstantBase.Rounding.RoundDown
— ConstantBase.round
— Methodround(z::Complex[, RoundingModeReal, [RoundingModeImaginary]])
round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; digits=0, base=10)
round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; sigdigits, base=10)
Return the nearest integral value of the same type as the complex-valued z
to z
, breaking ties using the specified RoundingMode
s. The first RoundingMode
is used for rounding the real components while the second is used for rounding the imaginary components.
RoundingModeReal
and RoundingModeImaginary
default to RoundNearest
, which rounds to the nearest integer, with ties (fractional values of 0.5) being rounded to the nearest even integer.
Examples
julia> round(3.14 + 4.5im)
3.0 + 4.0im
julia> round(3.14 + 4.5im, RoundUp, RoundNearestTiesUp)
4.0 + 5.0im
julia> round(3.14159 + 4.512im; digits = 1)
3.1 + 4.5im
julia> round(3.14159 + 4.512im; sigdigits = 3)
3.14 + 4.51im
Base.ceil
— Functionceil([T,] x)
ceil(x; digits::Integer= [, base = 10])
ceil(x; sigdigits::Integer= [, base = 10])
ceil(x)
returns the nearest integral value of the same type as x
that is greater than or equal to x
.
ceil(T, x)
converts the result to type T
, throwing an InexactError
if the ceiled value is not representable as a T
.
Keywords digits
, sigdigits
and base
work as for round
.
To support ceil
for a new type, define Base.round(x::NewType, ::RoundingMode{:Up})
.
Base.floor
— Functionfloor([T,] x)
floor(x; digits::Integer= [, base = 10])
floor(x; sigdigits::Integer= [, base = 10])
floor(x)
returns the nearest integral value of the same type as x
that is less than or equal to x
.
floor(T, x)
converts the result to type T
, throwing an InexactError
if the floored value is not representable a T
.
Keywords digits
, sigdigits
and base
work as for round
.
To support floor
for a new type, define Base.round(x::NewType, ::RoundingMode{:Down})
.
Base.trunc
— Functiontrunc([T,] x)
trunc(x; digits::Integer= [, base = 10])
trunc(x; sigdigits::Integer= [, base = 10])
trunc(x)
returns the nearest integral value of the same type as x
whose absolute value is less than or equal to the absolute value of x
.
trunc(T, x)
converts the result to type T
, throwing an InexactError
if the truncated value is not representable a T
.
Keywords digits
, sigdigits
and base
work as for round
.
To support trunc
for a new type, define Base.round(x::NewType, ::RoundingMode{:ToZero})
.
See also: %
, floor
, unsigned
, unsafe_trunc
.
Examples
julia> trunc(2.22)
2.0
julia> trunc(-2.22, digits=1)
-2.2
julia> trunc(Int, -2.22)
-2
Base.unsafe_trunc
— Functionunsafe_trunc(T, x)
Return the nearest integral value of type T
whose absolute value is less than or equal to the absolute value of x
. If the value is not representable by T
, an arbitrary value will be returned. See also trunc
.
Examples
julia> unsafe_trunc(Int, -2.2)
-2
julia> unsafe_trunc(Int, NaN)
-9223372036854775808
Base.min
— Functionmin(x, y, ...)
Return the minimum of the arguments, with respect to isless
. If any of the arguments is missing
, return missing
. See also the minimum
function to take the minimum element from a collection.
Examples
julia> min(2, 5, 1)
1
julia> min(4, missing, 6)
missing
Base.max
— Functionmax(x, y, ...)
Return the maximum of the arguments, with respect to isless
. If any of the arguments is missing
, return missing
. See also the maximum
function to take the maximum element from a collection.
Examples
julia> max(2, 5, 1)
5
julia> max(5, missing, 6)
missing
Base.minmax
— Functionminmax(x, y)
Return (min(x,y), max(x,y))
.
See also extrema
that returns (minimum(x), maximum(x))
.
Examples
julia> minmax('c','b')
('b', 'c')
Base.clamp
— Functionclamp(x::Integer, r::AbstractUnitRange)
Clamp x
to lie within range r
.
This method requires at least Julia 1.6.
clamp(x, T)::T
Clamp x
between typemin(T)
and typemax(T)
and convert the result to type T
.
See also trunc
.
Examples
julia> clamp(200, Int8)
127
julia> clamp(-200, Int8)
-128
julia> trunc(Int, 4pi^2)
39
clamp(x, lo, hi)
Return x
if lo <= x <= hi
. If x > hi
, return hi
. If x < lo
, return lo
. Arguments are promoted to a common type.
missing
as the first argument requires at least Julia 1.3.
Examples
julia> clamp.([pi, 1.0, big(10)], 2.0, 9.0)
3-element Vector{BigFloat}:
3.141592653589793238462643383279502884197169399375105820974944592307816406286198
2.0
9.0
julia> clamp.([11, 8, 5], 10, 6) # an example where lo > hi
3-element Vector{Int64}:
6
6
10
Base.clamp!
— Functionclamp!(array::AbstractArray, lo, hi)
Restrict values in array
to the specified range, in-place. See also clamp
.
missing
entries in array
require at least Julia 1.3.
Examples
julia> row = collect(-4:4)';
julia> clamp!(row, 0, Inf)
1×9 adjoint(::Vector{Int64}) with eltype Int64:
0 0 0 0 0 1 2 3 4
julia> clamp.((-4:4)', 0, Inf)
1×9 Matrix{Float64}:
0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0
Base.abs
— Functionabs(x)
The absolute value of x
.
When abs
is applied to signed integers, overflow may occur, resulting in the return of a negative value. This overflow occurs only when abs
is applied to the minimum representable value of a signed integer. That is, when x == typemin(typeof(x))
, abs(x) == x < 0
, not -x
as might be expected.
See also: abs2
, unsigned
, sign
.
Examples
julia> abs(-3)
3
julia> abs(1 + im)
1.4142135623730951
julia> abs.(Int8[-128 -127 -126 0 126 127]) # overflow at typemin(Int8)
1×6 Matrix{Int8}:
-128 127 126 0 126 127
julia> maximum(abs, [1, -2, 3, -4])
4
Base.Checked
— ModuleChecked
The Checked module provides arithmetic functions for the built-in signed and unsigned Integer types which throw an error when an overflow occurs. They are named like checked_sub
, checked_div
, etc. In addition, add_with_overflow
, sub_with_overflow
, mul_with_overflow
return both the unchecked results and a boolean value denoting the presence of an overflow.
Base.Checked.checked_abs
— FunctionBase.checked_abs(x)
Calculates abs(x)
, checking for overflow errors where applicable. For example, standard two's complement signed integers (e.g. Int
) cannot represent abs(typemin(Int))
, thus leading to an overflow.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_neg
— FunctionBase.checked_neg(x)
Calculates -x
, checking for overflow errors where applicable. For example, standard two's complement signed integers (e.g. Int
) cannot represent -typemin(Int)
, thus leading to an overflow.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_add
— FunctionBase.checked_add(x, y)
Calculates x+y
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_sub
— FunctionBase.checked_sub(x, y)
Calculates x-y
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_mul
— FunctionBase.checked_mul(x, y)
Calculates x*y
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_div
— FunctionBase.checked_div(x, y)
Calculates div(x,y)
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_rem
— FunctionBase.checked_rem(x, y)
Calculates x%y
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_fld
— FunctionBase.checked_fld(x, y)
Calculates fld(x,y)
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_mod
— FunctionBase.checked_mod(x, y)
Calculates mod(x,y)
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_cld
— FunctionBase.checked_cld(x, y)
Calculates cld(x,y)
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_pow
— FunctionBase.checked_pow(x, y)
Calculates ^(x,y)
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.add_with_overflow
— FunctionBase.add_with_overflow(x, y) -> (r, f)
Calculates r = x+y
, with the flag f
indicating whether overflow has occurred.
Base.Checked.sub_with_overflow
— FunctionBase.sub_with_overflow(x, y) -> (r, f)
Calculates r = x-y
, with the flag f
indicating whether overflow has occurred.
Base.Checked.mul_with_overflow
— FunctionBase.mul_with_overflow(x, y) -> (r, f)
Calculates r = x*y
, with the flag f
indicating whether overflow has occurred.
Base.abs2
— Functionabs2(x)
Squared absolute value of x
.
This can be faster than abs(x)^2
, especially for complex numbers where abs(x)
requires a square root via hypot
.
Examples
julia> abs2(-3)
9
julia> abs2(3.0 + 4.0im)
25.0
julia> sum(abs2, [1+2im, 3+4im]) # LinearAlgebra.norm(x)^2
30
Base.copysign
— Functioncopysign(x, y) -> z
Return z
which has the magnitude of x
and the same sign as y
.
Examples
julia> copysign(1, -2)
-1
julia> copysign(-1, 2)
1
Base.sign
— Functionsign(x)
Return zero if x==0
and $x/|x|$ otherwise (i.e., ±1 for real x
).
See also signbit
, zero
, copysign
, flipsign
.
Examples
julia> sign(-4.0)
-1.0
julia> sign(99)
1
julia> sign(-0.0)
-0.0
julia> sign(0 + im)
0.0 + 1.0im
Base.signbit
— Functionsignbit(x)
Return true
if the value of the sign of x
is negative, otherwise false
.
Examples
julia> signbit(-4)
true
julia> signbit(5)
false
julia> signbit(5.5)
false
julia> signbit(-4.1)
true
Base.flipsign
— Functionflipsign(x, y)
Return x
with its sign flipped if y
is negative. For example abs(x) = flipsign(x,x)
.
Examples
julia> flipsign(5, 3)
5
julia> flipsign(5, -3)
-5
Base.sqrt
— Methodsqrt(x)
Return $\sqrt{x}$.
Throw a DomainError
for negative Real
arguments. Use Complex
negative arguments instead to obtain a Complex
result.
The prefix operator √
is equivalent to sqrt
.
sqrt
has a branch cut along the negative real axis; -0.0im
is taken to be below the axis.
See also: hypot
.
Examples
julia> sqrt(big(81))
9.0
julia> sqrt(big(-81))
ERROR: DomainError with -81.0:
NaN result for non-NaN input.
Stacktrace:
[1] sqrt(::BigFloat) at ./mpfr.jl:501
[...]
julia> sqrt(big(complex(-81)))
0.0 + 9.0im
julia> sqrt(-81 - 0.0im) # -0.0im is below the branch cut
0.0 - 9.0im
julia> .√(1:4)
4-element Vector{Float64}:
1.0
1.4142135623730951
1.7320508075688772
2.0
Base.isqrt
— Functionisqrt(n::Integer)
Integer square root: the largest integer m
such that m*m <= n
.
julia> isqrt(5)
2
Base.Math.cbrt
— Methodcbrt(x::Real)
Return the cube root of x
, i.e. $x^{1/3}$. Negative values are accepted (returning the negative real root when $x < 0$).
The prefix operator ∛
is equivalent to cbrt
.
Examples
julia> cbrt(big(27))
3.0
julia> cbrt(big(-27))
-3.0
Base.Math.fourthroot
— Methodfourthroot(x)
Return the fourth root of x
by applying sqrt
twice successively.
Base.real
— Functionreal(A::AbstractArray)
Return an array containing the real part of each entry in array A
.
Equivalent to real.(A)
, except that when eltype(A) <: Real
A
is returned without copying, and that when A
has zero dimensions, a 0-dimensional array is returned (rather than a scalar).
Examples
julia> real([1, 2im, 3 + 4im])
3-element Vector{Int64}:
1
0
3
julia> real(fill(2 - im))
0-dimensional Array{Int64, 0}:
2
real(T::Type)
Return the type that represents the real part of a value of type T
. e.g: for T == Complex{R}
, returns R
. Equivalent to typeof(real(zero(T)))
.
Examples
julia> real(Complex{Int})
Int64
julia> real(Float64)
Float64
real(z)
Return the real part of the complex number z
.
See also: imag
, reim
, complex
, isreal
, Real
.
Examples
julia> real(1 + 3im)
1
Base.imag
— Functionimag(A::AbstractArray)
Return an array containing the imaginary part of each entry in array A
.
Equivalent to imag.(A)
, except that when A
has zero dimensions, a 0-dimensional array is returned (rather than a scalar).
Examples
julia> imag([1, 2im, 3 + 4im])
3-element Vector{Int64}:
0
2
4
julia> imag(fill(2 - im))
0-dimensional Array{Int64, 0}:
-1
imag(z)
Return the imaginary part of the complex number z
.
See also: conj
, reim
, adjoint
, angle
.
Examples
julia> imag(1 + 3im)
3
Base.reim
— Functionreim(A::AbstractArray)
Return a tuple of two arrays containing respectively the real and the imaginary part of each entry in A
.
Equivalent to (real.(A), imag.(A))
, except that when eltype(A) <: Real
A
is returned without copying to represent the real part, and that when A
has zero dimensions, a 0-dimensional array is returned (rather than a scalar).
Examples
julia> reim([1, 2im, 3 + 4im])
([1, 0, 3], [0, 2, 4])
julia> reim(fill(2 - im))
(fill(2), fill(-1))
reim(z)
Return a tuple of the real and imaginary parts of the complex number z
.
Examples
julia> reim(1 + 3im)
(1, 3)
Base.conj
— Functionconj(A::AbstractArray)
Return an array containing the complex conjugate of each entry in array A
.
Equivalent to conj.(A)
, except that when eltype(A) <: Real
A
is returned without copying, and that when A
has zero dimensions, a 0-dimensional array is returned (rather than a scalar).
Examples
julia> conj([1, 2im, 3 + 4im])
3-element Vector{Complex{Int64}}:
1 + 0im
0 - 2im
3 - 4im
julia> conj(fill(2 - im))
0-dimensional Array{Complex{Int64}, 0}:
2 + 1im
conj(z)
Compute the complex conjugate of a complex number z
.
Examples
julia> conj(1 + 3im)
1 - 3im
Base.angle
— Functionangle(z)
Compute the phase angle in radians of a complex number z
.
Returns a number -pi ≤ angle(z) ≤ pi
, and is thus discontinuous along the negative real axis.
Examples
julia> rad2deg(angle(1 + im))
45.0
julia> rad2deg(angle(1 - im))
-45.0
julia> rad2deg(angle(-1 + 1e-20im))
180.0
julia> rad2deg(angle(-1 - 1e-20im))
-180.0
Base.cis
— Functioncis(x)
More efficient method for exp(im*x)
by using Euler's formula: $\cos(x) + i \sin(x) = \exp(i x)$.
See also cispi
, sincos
, exp
, angle
.
Examples
julia> cis(π) ≈ -1
true
Base.cispi
— Functioncispi(x)
More accurate method for cis(pi*x)
(especially for large x
).
See also cis
, sincospi
, exp
, angle
.
Examples
julia> cispi(10000)
1.0 + 0.0im
julia> cispi(0.25 + 1im)
0.030556854645954562 + 0.03055685464595456im
This function requires Julia 1.6 or later.
Base.binomial
— Functionbinomial(x::Number, k::Integer)
The generalized binomial coefficient, defined for k ≥ 0
by the polynomial
\[\frac{1}{k!} \prod_{j=0}^{k-1} (x - j)\]
When k < 0
it returns zero.
For the case of integer x
, this is equivalent to the ordinary integer binomial coefficient
\[\binom{n}{k} = \frac{n!}{k! (n-k)!}\]
Further generalizations to non-integer k
are mathematically possible, but involve the Gamma function and/or the beta function, which are not provided by the Julia standard library but are available in external packages such as SpecialFunctions.jl.
External links
- Binomial coefficient on Wikipedia.
binomial(n::Integer, k::Integer)
The binomial coefficient $\binom{n}{k}$, being the coefficient of the $k$th term in the polynomial expansion of $(1+x)^n$.
If $n$ is non-negative, then it is the number of ways to choose k
out of n
items:
\[\binom{n}{k} = \frac{n!}{k! (n-k)!}\]
where $n!$ is the factorial
function.
If $n$ is negative, then it is defined in terms of the identity
\[\binom{n}{k} = (-1)^k \binom{k-n-1}{k}\]
See also factorial
.
Examples
julia> binomial(5, 3)
10
julia> factorial(5) ÷ (factorial(5-3) * factorial(3))
10
julia> binomial(-5, 3)
-35
External links
- Binomial coefficient on Wikipedia.
Base.factorial
— Functionfactorial(n::Integer)
Factorial of n
. If n
is an Integer
, the factorial is computed as an integer (promoted to at least 64 bits). Note that this may overflow if n
is not small, but you can use factorial(big(n))
to compute the result exactly in arbitrary precision.
See also binomial
.
Examples
julia> factorial(6)
720
julia> factorial(21)
ERROR: OverflowError: 21 is too large to look up in the table; consider using `factorial(big(21))` instead
Stacktrace:
[...]
julia> factorial(big(21))
51090942171709440000
External links
- Factorial on Wikipedia.
Base.gcd
— Functiongcd(x, y...)
Greatest common (positive) divisor (or zero if all arguments are zero). The arguments may be integer and rational numbers.
Rational arguments require Julia 1.4 or later.
Examples
julia> gcd(6, 9)
3
julia> gcd(6, -9)
3
julia> gcd(6, 0)
6
julia> gcd(0, 0)
0
julia> gcd(1//3, 2//3)
1//3
julia> gcd(1//3, -2//3)
1//3
julia> gcd(1//3, 2)
1//3
julia> gcd(0, 0, 10, 15)
5
Base.lcm
— Functionlcm(x, y...)
Least common (positive) multiple (or zero if any argument is zero). The arguments may be integer and rational numbers.
Rational arguments require Julia 1.4 or later.
Examples
julia> lcm(2, 3)
6
julia> lcm(-2, 3)
6
julia> lcm(0, 3)
0
julia> lcm(0, 0)
0
julia> lcm(1//3, 2//3)
2//3
julia> lcm(1//3, -2//3)
2//3
julia> lcm(1//3, 2)
2//1
julia> lcm(1, 3, 5, 7)
105
Base.gcdx
— Functiongcdx(a, b...)
Computes the greatest common (positive) divisor of a
and b
and their Bézout coefficients, i.e. the integer coefficients u
and v
that satisfy $u*a + v*b = d = gcd(a, b)$. $gcdx(a, b)$ returns $(d, u, v)$.
For more arguments than two, i.e., gcdx(a, b, c, ...)
the Bézout coefficients are computed recursively, returning a solution (d, u, v, w, ...)
to $u*a + v*b + w*c + ... = d = gcd(a, b, c, ...)$.
The arguments may be integer and rational numbers.
Rational arguments require Julia 1.4 or later.
More or fewer arguments than two require Julia 1.12 or later.
Examples
julia> gcdx(12, 42)
(6, -3, 1)
julia> gcdx(240, 46)
(2, -9, 47)
julia> gcdx(15, 12, 20)
(1, 7, -7, -1)
Bézout coefficients are not uniquely defined. gcdx
returns the minimal Bézout coefficients that are computed by the extended Euclidean algorithm. (Ref: D. Knuth, TAoCP, 2/e, p. 325, Algorithm X.) For signed integers, these coefficients u
and v
are minimal in the sense that $|u| < |b/d|$ and $|v| < |a/d|$. Furthermore, the signs of u
and v
are chosen so that d
is positive. For unsigned integers, the coefficients u
and v
might be near their typemax
, and the identity then holds only via the unsigned integers' modulo arithmetic.
Base.ispow2
— Functionispow2(n::Number) -> Bool
Test whether n
is an integer power of two.
See also count_ones
, prevpow
, nextpow
.
Examples
julia> ispow2(4)
true
julia> ispow2(5)
false
julia> ispow2(4.5)
false
julia> ispow2(0.25)
true
julia> ispow2(1//8)
true
Support for non-Integer
arguments was added in Julia 1.6.
Base.nextpow
— Functionnextpow(a, x)
The smallest a^n
not less than x
, where n
is a non-negative integer. a
must be greater than 1, and x
must be greater than 0.
See also prevpow
.
Examples
julia> nextpow(2, 7)
8
julia> nextpow(2, 9)
16
julia> nextpow(5, 20)
25
julia> nextpow(4, 16)
16
Base.prevpow
— Functionprevpow(a, x)
The largest a^n
not greater than x
, where n
is a non-negative integer. a
must be greater than 1, and x
must not be less than 1.
Examples
julia> prevpow(2, 7)
4
julia> prevpow(2, 9)
8
julia> prevpow(5, 20)
5
julia> prevpow(4, 16)
16
Base.nextprod
— Functionnextprod(factors::Union{Tuple,AbstractVector}, n)
Next integer greater than or equal to n
that can be written as $\prod k_i^{p_i}$ for integers $p_1$, $p_2$, etcetera, for factors $k_i$ in factors
.
Examples
julia> nextprod((2, 3), 105)
108
julia> 2^2 * 3^3
108
The method that accepts a tuple requires Julia 1.6 or later.
Base.invmod
— Functioninvmod(n::Integer, T) where {T <: Base.BitInteger}
invmod(n::T) where {T <: Base.BitInteger}
Compute the modular inverse of n
in the integer ring of type T
, i.e. modulo 2^N
where N = 8*sizeof(T)
(e.g. N = 32
for Int32
). In other words, these methods satisfy the following identities:
n * invmod(n) == 1
(n * invmod(n, T)) % T == 1
(n % T) * invmod(n, T) == 1
Note that *
here is modular multiplication in the integer ring, T
. This will throw an error if n
is even, because then it is not relatively prime with 2^N
and thus has no such inverse.
Specifying the modulus implied by an integer type as an explicit value is often inconvenient since the modulus is by definition too big to be represented by the type.
The modular inverse is computed much more efficiently than the general case using the algorithm described in https://arxiv.org/pdf/2204.04342.pdf.
The invmod(n)
and invmod(n, T)
methods require Julia 1.11 or later.
invmod(n::Integer, m::Integer)
Take the inverse of n
modulo m
: y
such that $n y = 1 \pmod m$, and $div(y,m) = 0$. This will throw an error if $m = 0$, or if $gcd(n,m) \neq 1$.
Examples
julia> invmod(2, 5)
3
julia> invmod(2, 3)
2
julia> invmod(5, 6)
5
Base.powermod
— Functionpowermod(x::Integer, p::Integer, m)
Compute $x^p \pmod m$.
Examples
julia> powermod(2, 6, 5)
4
julia> mod(2^6, 5)
4
julia> powermod(5, 2, 20)
5
julia> powermod(5, 2, 19)
6
julia> powermod(5, 3, 19)
11
Base.ndigits
— Functionndigits(n::Integer; base::Integer=10, pad::Integer=1)
Compute the number of digits in integer n
written in base base
(base
must not be in [-1, 0, 1]
), optionally padded with zeros to a specified size (the result will never be less than pad
).
See also digits
, count_ones
.
Examples
julia> ndigits(0)
1
julia> ndigits(12345)
5
julia> ndigits(1022, base=16)
3
julia> string(1022, base=16)
"3fe"
julia> ndigits(123, pad=5)
5
julia> ndigits(-123)
3
Base.add_sum
— FunctionBase.add_sum(x, y)
The reduction operator used in sum
. The main difference from +
is that small integers are promoted to Int
/UInt
.
Base.widemul
— Functionwidemul(x, y)
Multiply x
and y
, giving the result as a larger type.
See also promote
, Base.add_sum
.
Examples
julia> widemul(Float32(3.0), 4.0) isa BigFloat
true
julia> typemax(Int8) * typemax(Int8)
1
julia> widemul(typemax(Int8), typemax(Int8)) # == 127^2
16129
Base.Math.evalpoly
— Functionevalpoly(x, p)
Evaluate the polynomial $\sum_k x^{k-1} p[k]$ for the coefficients p[1]
, p[2]
, ...; that is, the coefficients are given in ascending order by power of x
. Loops are unrolled at compile time if the number of coefficients is statically known, i.e. when p
is a Tuple
. This function generates efficient code using Horner's method if x
is real, or using a Goertzel-like [DK62] algorithm if x
is complex.
This function requires Julia 1.4 or later.
Examples
julia> evalpoly(2, (1, 2, 3))
17
Base.Math.@evalpoly
— Macro@evalpoly(z, c...)
Evaluate the polynomial $\sum_k z^{k-1} c[k]$ for the coefficients c[1]
, c[2]
, ...; that is, the coefficients are given in ascending order by power of z
. This macro expands to efficient inline code that uses either Horner's method or, for complex z
, a more efficient Goertzel-like algorithm.
See also evalpoly
.
Examples
julia> @evalpoly(3, 1, 0, 1)
10
julia> @evalpoly(2, 1, 0, 1)
5
julia> @evalpoly(2, 1, 1, 1)
7
Base.FastMath.@fastmath
— Macro@fastmath expr
Execute a transformed version of the expression, which calls functions that may violate strict IEEE semantics. This allows the fastest possible operation, but results are undefined – be careful when doing this, as it may change numerical results.
This sets the LLVM Fast-Math flags, and corresponds to the -ffast-math
option in clang. See the notes on performance annotations for more details.
Examples
julia> @fastmath 1+2
3
julia> @fastmath(sin(3))
0.1411200080598672
Customizable binary operators
Some unicode characters can be used to define new binary operators that support infix notation. For example ⊗(x,y) = kron(x,y)
defines the ⊗
(otimes) function to be the Kronecker product, and one can call it as binary operator using infix syntax: C = A ⊗ B
as well as with the usual prefix syntax C = ⊗(A,B)
.
Other characters that support such extensions include \odot ⊙
and \oplus ⊕
The complete list is in the parser code: https://github.com/JuliaLang/julia/blob/master/src/julia-parser.scm
Those that are parsed like *
(in terms of precedence) include * / ÷ % & ⋅ ∘ × |\\| ∩ ∧ ⊗ ⊘ ⊙ ⊚ ⊛ ⊠ ⊡ ⊓ ∗ ∙ ∤ ⅋ ≀ ⊼ ⋄ ⋆ ⋇ ⋉ ⋊ ⋋ ⋌ ⋏ ⋒ ⟑ ⦸ ⦼ ⦾ ⦿ ⧶ ⧷ ⨇ ⨰ ⨱ ⨲ ⨳ ⨴ ⨵ ⨶ ⨷ ⨸ ⨻ ⨼ ⨽ ⩀ ⩃ ⩄ ⩋ ⩍ ⩎ ⩑ ⩓ ⩕ ⩘ ⩚ ⩜ ⩞ ⩟ ⩠ ⫛ ⊍ ▷ ⨝ ⟕ ⟖ ⟗
and those that are parsed like +
include + - |\|| ⊕ ⊖ ⊞ ⊟ |++| ∪ ∨ ⊔ ± ∓ ∔ ∸ ≏ ⊎ ⊻ ⊽ ⋎ ⋓ ⟇ ⧺ ⧻ ⨈ ⨢ ⨣ ⨤ ⨥ ⨦ ⨧ ⨨ ⨩ ⨪ ⨫ ⨬ ⨭ ⨮ ⨹ ⨺ ⩁ ⩂ ⩅ ⩊ ⩌ ⩏ ⩐ ⩒ ⩔ ⩖ ⩗ ⩛ ⩝ ⩡ ⩢ ⩣
There are many others that are related to arrows, comparisons, and powers.
- DK62Donald Knuth, Art of Computer Programming, Volume 2: Seminumerical Algorithms, Sec. 4.6.4.