Numbers
Standard Numeric Types
Abstract number types
Core.Number — Type.NumberAbstract supertype for all number types.
Core.Real — Type.Real <: NumberAbstract supertype for all real numbers.
Core.AbstractFloat — Type.AbstractFloat <: RealAbstract supertype for all floating point numbers.
Core.Integer — Type.Integer <: RealAbstract supertype for all integers.
Core.Signed — Type.Signed <: IntegerAbstract supertype for all signed integers.
Core.Unsigned — Type.Unsigned <: IntegerAbstract supertype for all unsigned integers.
Concrete number types
Core.Float16 — Type.Float16 <: AbstractFloat16-bit floating point number type.
Core.Float32 — Type.Float32 <: AbstractFloat32-bit floating point number type.
Core.Float64 — Type.Float64 <: AbstractFloat64-bit floating point number type.
Base.MPFR.BigFloat — Type.BigFloat <: AbstractFloatArbitrary precision floating point number type.
Core.Bool — Type.Bool <: IntegerBoolean type.
Core.Int8 — Type.Int8 <: Signed8-bit signed integer type.
Core.UInt8 — Type.UInt8 <: Unsigned8-bit unsigned integer type.
Core.Int16 — Type.Int16 <: Signed16-bit signed integer type.
Core.UInt16 — Type.UInt16 <: Unsigned16-bit unsigned integer type.
Core.Int32 — Type.Int32 <: Signed32-bit signed integer type.
Core.UInt32 — Type.UInt32 <: Unsigned32-bit unsigned integer type.
Core.Int64 — Type.Int64 <: Signed64-bit signed integer type.
Core.UInt64 — Type.UInt64 <: Unsigned64-bit unsigned integer type.
Core.Int128 — Type.Int128 <: Signed128-bit signed integer type.
Core.UInt128 — Type.UInt128 <: Unsigned128-bit unsigned integer type.
Base.GMP.BigInt — Type.BigInt <: IntegerArbitrary precision integer type.
Base.Complex — Type.Complex{T<:Real} <: NumberComplex number type with real and imaginary part of type T.
Complex32, Complex64 and Complex128 are aliases for Complex{Float16}, Complex{Float32} and Complex{Float64} respectively.
Base.Rational — Type.Rational{T<:Integer} <: RealRational number type, with numerator and denominator of type T.
Base.Irrational — Type.Irrational <: RealIrrational number type.
Data Formats
Base.bin — Function.bin(n, pad::Int=1)Convert an integer to a binary string, optionally specifying a number of digits to pad to.
julia> bin(10,2)
"1010"
julia> bin(10,8)
"00001010"Base.hex — Function.hex(n, pad::Int=1)Convert an integer to a hexadecimal string, optionally specifying a number of digits to pad to.
julia> hex(20)
"14"
julia> hex(20, 3)
"014"Base.dec — Function.dec(n, pad::Int=1)Convert an integer to a decimal string, optionally specifying a number of digits to pad to.
Examples
julia> dec(20)
"20"
julia> dec(20, 3)
"020"Base.oct — Function.oct(n, pad::Int=1)Convert an integer to an octal string, optionally specifying a number of digits to pad to.
julia> oct(20)
"24"
julia> oct(20, 3)
"024"Base.base — Function.base(base::Integer, n::Integer, pad::Integer=1)Convert an integer n to a string in the given base, optionally specifying a number of digits to pad to.
julia> base(13,5,4)
"0005"
julia> base(5,13,4)
"0023"Base.digits — Function.digits([T<:Integer], n::Integer, base::T=10, pad::Integer=1)Returns an array with element type T (default Int) of the digits of n in the given base, optionally padded with zeros to a specified size. More significant digits are at higher indexes, such that n == sum([digits[k]*base^(k-1) for k=1:length(digits)]).
Examples
julia> digits(10, 10)
2-element Array{Int64,1}:
0
1
julia> digits(10, 2)
4-element Array{Int64,1}:
0
1
0
1
julia> digits(10, 2, 6)
6-element Array{Int64,1}:
0
1
0
1
0
0Base.digits! — Function.digits!(array, n::Integer, base::Integer=10)Fills an array of the digits of n in the given base. More significant digits are at higher indexes. If the array length is insufficient, the least significant digits are filled up to the array length. If the array length is excessive, the excess portion is filled with zeros.
Examples
julia> digits!([2,2,2,2], 10, 2)
4-element Array{Int64,1}:
0
1
0
1
julia> digits!([2,2,2,2,2,2], 10, 2)
6-element Array{Int64,1}:
0
1
0
1
0
0Base.bits — Function.bits(n)A string giving the literal bit representation of a number.
Example
julia> bits(4)
"0000000000000000000000000000000000000000000000000000000000000100"
julia> bits(2.2)
"0100000000000001100110011001100110011001100110011001100110011010"Base.parse — Method.parse(type, str, [base])Parse a string as a number. If the type is an integer type, then a base can be specified (the default is 10). If the type is a floating point type, the string is parsed as a decimal floating point number. If the string does not contain a valid number, an error is raised.
julia> parse(Int, "1234")
1234
julia> parse(Int, "1234", 5)
194
julia> parse(Int, "afc", 16)
2812
julia> parse(Float64, "1.2e-3")
0.0012Base.tryparse — Function.tryparse(type, str, [base])Like parse, but returns a Nullable of the requested type. The result will be null if the string does not contain a valid number.
Base.big — Function.big(x)Convert a number to a maximum precision representation (typically BigInt or BigFloat). See BigFloat for information about some pitfalls with floating-point numbers.
Base.signed — Function.signed(x)Convert a number to a signed integer. If the argument is unsigned, it is reinterpreted as signed without checking for overflow.
Base.unsigned — Function.unsigned(x) -> UnsignedConvert a number to an unsigned integer. If the argument is signed, it is reinterpreted as unsigned without checking for negative values.
Examples
julia> unsigned(-2)
0xfffffffffffffffe
julia> unsigned(2)
0x0000000000000002
julia> signed(unsigned(-2))
-2Base.float — Method.float(x)Convert a number or array to a floating point data type. When passed a string, this function is equivalent to parse(Float64, x).
Base.Math.significand — Function.significand(x)Extract the significand(s) (a.k.a. mantissa), in binary representation, of a floating-point number. If x is a non-zero finite number, then the result will be a number of the same type on the interval $[1,2)$. Otherwise x is returned.
Examples
julia> significand(15.2)/15.2
0.125
julia> significand(15.2)*8
15.2Base.Math.exponent — Function.exponent(x) -> IntGet the exponent of a normalized floating-point number.
Base.complex — Method.complex(r, [i])Convert real numbers or arrays to complex. i defaults to zero.
Base.bswap — Function.bswap(n)Byte-swap an integer. Flip the bits of its binary representation.
Examples
julia> a = bswap(4)
288230376151711744
julia> bswap(a)
4
julia> bin(1)
"1"
julia> bin(bswap(1))
"100000000000000000000000000000000000000000000000000000000"Base.num2hex — Function.num2hex(f)Get a hexadecimal string of the binary representation of a floating point number.
Example
julia> num2hex(2.2)
"400199999999999a"Base.hex2num — Function.hex2num(str)Convert a hexadecimal string to the floating point number it represents.
Base.hex2bytes — Function.hex2bytes(s::AbstractString)Convert an arbitrarily long hexadecimal string to its binary representation. Returns an Array{UInt8,1}, i.e. an array of bytes.
julia> a = hex(12345)
"3039"
julia> hex2bytes(a)
2-element Array{UInt8,1}:
0x30
0x39Base.bytes2hex — Function.bytes2hex(bin_arr::Array{UInt8, 1}) -> StringConvert an array of bytes to its hexadecimal representation. All characters are in lower-case.
julia> a = hex(12345)
"3039"
julia> b = hex2bytes(a)
2-element Array{UInt8,1}:
0x30
0x39
julia> bytes2hex(b)
"3039"General Number Functions and Constants
Base.one — Function.one(x)
one(T::type)Return a multiplicative identity for x: a value such that one(x)*x == x*one(x) == x. Alternatively one(T) can take a type T, in which case one returns a multiplicative identity for any x of type T.
If possible, one(x) returns a value of the same type as x, and one(T) returns a value of type T. However, this may not be the case for types representing dimensionful quantities (e.g. time in days), since the multiplicative identity must be dimensionless. In that case, one(x) should return an identity value of the same precision (and shape, for matrices) as x.
If you want a quantity that is of the same type as x, or of type T, even if x is dimensionful, use oneunit instead.
julia> one(3.7)
1.0
julia> one(Int)
1
julia> one(Dates.Day(1))
1Base.oneunit — Function.oneunit(x::T)
oneunit(T::Type)Returns T(one(x)), where T is either the type of the argument or (if a type is passed) the argument. This differs from one for dimensionful quantities: one is dimensionless (a multiplicative identity) while oneunit is dimensionful (of the same type as x, or of type T).
julia> oneunit(3.7)
1.0
julia> oneunit(Dates.Day)
1 dayBase.zero — Function.zero(x)Get the additive identity element for the type of x (x can also specify the type itself).
julia> zero(1)
0
julia> zero(big"2.0")
0.000000000000000000000000000000000000000000000000000000000000000000000000000000
julia> zero(rand(2,2))
2×2 Array{Float64,2}:
0.0 0.0
0.0 0.0Base.pi — Constant.pi
πThe constant pi.
julia> pi
π = 3.1415926535897...Base.im — Constant.imThe imaginary unit.
Base.eu — Constant.e
euThe constant e.
julia> e
e = 2.7182818284590...Base.catalan — Constant.catalanCatalan's constant.
julia> catalan
catalan = 0.9159655941772...Base.eulergamma — Constant.γ
eulergammaEuler's constant.
julia> eulergamma
γ = 0.5772156649015...Base.golden — Constant.φ
goldenThe golden ratio.
julia> golden
φ = 1.6180339887498...Base.Inf — Constant.InfPositive infinity of type Float64.
Base.Inf32 — Constant.Inf32Positive infinity of type Float32.
Base.Inf16 — Constant.Inf16Positive infinity of type Float16.
Base.NaN — Constant.NaNA not-a-number value of type Float64.
Base.NaN32 — Constant.NaN32A not-a-number value of type Float32.
Base.NaN16 — Constant.NaN16A not-a-number value of type Float16.
Base.issubnormal — Function.issubnormal(f) -> BoolTest whether a floating point number is subnormal.
Base.isfinite — Function.isfinite(f) -> BoolTest whether a number is finite.
julia> isfinite(5)
true
julia> isfinite(NaN32)
falseBase.isinf — Function.isinf(f) -> BoolTest whether a number is infinite.
Base.isnan — Function.isnan(f) -> BoolTest whether a floating point number is not a number (NaN).
Base.iszero — Function.iszero(x)Return true if x == zero(x); if x is an array, this checks whether all of the elements of x are zero.
Base.nextfloat — Function.nextfloat(x::AbstractFloat, n::Integer)The result of n iterative applications of nextfloat to x if n >= 0, or -n applications of prevfloat if n < 0.
nextfloat(x::AbstractFloat)Returns the smallest floating point number y of the same type as x such x < y. If no such y exists (e.g. if x is Inf or NaN), then returns x.
Base.prevfloat — Function.prevfloat(x::AbstractFloat)Returns the largest floating point number y of the same type as x such y < x. If no such y exists (e.g. if x is -Inf or NaN), then returns x.
Base.isinteger — Function.isinteger(x) -> BoolTest whether x is numerically equal to some integer.
julia> isinteger(4.0)
trueBase.isreal — Function.isreal(x) -> BoolTest whether x or all its elements are numerically equal to some real number.
julia> isreal(5.)
true
julia> isreal([4.; complex(0,1)])
falseCore.Float32 — Method.Float32(x [, mode::RoundingMode])Create a Float32 from x. If x is not exactly representable then mode determines how x is rounded.
Examples
julia> Float32(1/3, RoundDown)
0.3333333f0
julia> Float32(1/3, RoundUp)
0.33333334f0See RoundingMode for available rounding modes.
Core.Float64 — Method.Float64(x [, mode::RoundingMode])Create a Float64 from x. If x is not exactly representable then mode determines how x is rounded.
Examples
julia> Float64(pi, RoundDown)
3.141592653589793
julia> Float64(pi, RoundUp)
3.1415926535897936See RoundingMode for available rounding modes.
Base.GMP.BigInt — Method.BigInt(x)Create an arbitrary precision integer. x may be an Int (or anything that can be converted to an Int). The usual mathematical operators are defined for this type, and results are promoted to a BigInt.
Instances can be constructed from strings via parse, or using the big string literal.
julia> parse(BigInt, "42")
42
julia> big"313"
313Base.MPFR.BigFloat — Method.BigFloat(x)Create an arbitrary precision floating point number. x may be an Integer, a Float64 or a BigInt. The usual mathematical operators are defined for this type, and results are promoted to a BigFloat.
Note that because decimal literals are converted to floating point numbers when parsed, BigFloat(2.1) may not yield what you expect. You may instead prefer to initialize constants from strings via parse, or using the big string literal.
julia> BigFloat(2.1)
2.100000000000000088817841970012523233890533447265625000000000000000000000000000
julia> big"2.1"
2.099999999999999999999999999999999999999999999999999999999999999999999999999986Base.Rounding.rounding — Function.rounding(T)Get the current floating point rounding mode for type T, controlling the rounding of basic arithmetic functions (+, -, *, / and sqrt) and type conversion.
See RoundingMode for available modes.
Base.Rounding.setrounding — Method.setrounding(T, mode)Set the rounding mode of floating point type T, controlling the rounding of basic arithmetic functions (+, -, *, / and sqrt) and type conversion. Other numerical functions may give incorrect or invalid values when using rounding modes other than the default RoundNearest.
Note that this may affect other types, for instance changing the rounding mode of Float64 will change the rounding mode of Float32. See RoundingMode for available modes.
This feature is still experimental, and may give unexpected or incorrect values.
Base.Rounding.setrounding — Method.setrounding(f::Function, T, mode)Change the rounding mode of floating point type T for the duration of f. It is logically equivalent to:
old = rounding(T)
setrounding(T, mode)
f()
setrounding(T, old)See RoundingMode for available rounding modes.
This feature is still experimental, and may give unexpected or incorrect values. A known problem is the interaction with compiler optimisations, e.g.
julia> setrounding(Float64,RoundDown) do
1.1 + 0.1
end
1.2000000000000002Here the compiler is constant folding, that is evaluating a known constant expression at compile time, however the rounding mode is only changed at runtime, so this is not reflected in the function result. This can be avoided by moving constants outside the expression, e.g.
julia> x = 1.1; y = 0.1;
julia> setrounding(Float64,RoundDown) do
x + y
end
1.2Base.Rounding.get_zero_subnormals — Function.get_zero_subnormals() -> BoolReturns false if operations on subnormal floating-point values ("denormals") obey rules for IEEE arithmetic, and true if they might be converted to zeros.
Base.Rounding.set_zero_subnormals — Function.set_zero_subnormals(yes::Bool) -> BoolIf yes is false, subsequent floating-point operations follow rules for IEEE arithmetic on subnormal values ("denormals"). Otherwise, floating-point operations are permitted (but not required) to convert subnormal inputs or outputs to zero. Returns true unless yes==true but the hardware does not support zeroing of subnormal numbers.
set_zero_subnormals(true) can speed up some computations on some hardware. However, it can break identities such as (x-y==0) == (x==y).
Integers
Base.count_ones — Function.count_ones(x::Integer) -> IntegerNumber of ones in the binary representation of x.
julia> count_ones(7)
3Base.count_zeros — Function.count_zeros(x::Integer) -> IntegerNumber of zeros in the binary representation of x.
julia> count_zeros(Int32(2 ^ 16 - 1))
16Base.leading_zeros — Function.leading_zeros(x::Integer) -> IntegerNumber of zeros leading the binary representation of x.
julia> leading_zeros(Int32(1))
31Base.leading_ones — Function.leading_ones(x::Integer) -> IntegerNumber of ones leading the binary representation of x.
julia> leading_ones(UInt32(2 ^ 32 - 2))
31Base.trailing_zeros — Function.trailing_zeros(x::Integer) -> IntegerNumber of zeros trailing the binary representation of x.
julia> trailing_zeros(2)
1Base.trailing_ones — Function.trailing_ones(x::Integer) -> IntegerNumber of ones trailing the binary representation of x.
julia> trailing_ones(3)
2Base.isodd — Function.isodd(x::Integer) -> BoolReturns true if x is odd (that is, not divisible by 2), and false otherwise.
julia> isodd(9)
true
julia> isodd(10)
falseBase.iseven — Function.iseven(x::Integer) -> BoolReturns true is x is even (that is, divisible by 2), and false otherwise.
julia> iseven(9)
false
julia> iseven(10)
trueBigFloats
The BigFloat type implements arbitrary-precision floating-point arithmetic using the GNU MPFR library.
Base.precision — Function.precision(num::AbstractFloat)Get the precision of a floating point number, as defined by the effective number of bits in the mantissa.
Base.precision — Method.precision(BigFloat)Get the precision (in bits) currently used for BigFloat arithmetic.
Base.MPFR.setprecision — Function.setprecision([T=BigFloat,] precision::Int)Set the precision (in bits) to be used for T arithmetic.
setprecision(f::Function, [T=BigFloat,] precision::Integer)Change the T arithmetic precision (in bits) for the duration of f. It is logically equivalent to:
old = precision(BigFloat)
setprecision(BigFloat, precision)
f()
setprecision(BigFloat, old)Often used as setprecision(T, precision) do ... end
Base.MPFR.BigFloat — Method.BigFloat(x, prec::Int)Create a representation of x as a BigFloat with precision prec.
Base.MPFR.BigFloat — Method.BigFloat(x, rounding::RoundingMode)Create a representation of x as a BigFloat with the current global precision and rounding mode rounding.
Base.MPFR.BigFloat — Method.BigFloat(x, prec::Int, rounding::RoundingMode)Create a representation of x as a BigFloat with precision prec and rounding mode rounding.
Base.MPFR.BigFloat — Method.BigFloat(x::String)Create a representation of the string x as a BigFloat.
Random Numbers
Random number generation in Julia uses the Mersenne Twister library via MersenneTwister objects. Julia has a global RNG, which is used by default. Other RNG types can be plugged in by inheriting the AbstractRNG type; they can then be used to have multiple streams of random numbers. Besides MersenneTwister, Julia also provides the RandomDevice RNG type, which is a wrapper over the OS provided entropy.
Most functions related to random generation accept an optional AbstractRNG as the first argument, rng , which defaults to the global one if not provided. Morever, some of them accept optionally dimension specifications dims... (which can be given as a tuple) to generate arrays of random values.
A MersenneTwister or RandomDevice RNG can generate random numbers of the following types: Float16, Float32, Float64, Bool, Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128, BigInt (or complex numbers of those types). Random floating point numbers are generated uniformly in $[0, 1)$. As BigInt represents unbounded integers, the interval must be specified (e.g. rand(big(1:6))).
Base.Random.srand — Function.srand([rng=GLOBAL_RNG], [seed]) -> rng
srand([rng=GLOBAL_RNG], filename, n=4) -> rngReseed the random number generator. If a seed is provided, the RNG will give a reproducible sequence of numbers, otherwise Julia will get entropy from the system. For MersenneTwister, the seed may be a non-negative integer, a vector of UInt32 integers or a filename, in which case the seed is read from a file (4n bytes are read from the file, where n is an optional argument). RandomDevice does not support seeding.
Base.Random.MersenneTwister — Type.MersenneTwister(seed)Create a MersenneTwister RNG object. Different RNG objects can have their own seeds, which may be useful for generating different streams of random numbers.
Example
julia> rng = MersenneTwister(1234);Base.Random.RandomDevice — Type.RandomDevice()Create a RandomDevice RNG object. Two such objects will always generate different streams of random numbers.
Base.Random.rand — Function.rand([rng=GLOBAL_RNG], [S], [dims...])Pick a random element or array of random elements from the set of values specified by S; S can be
an indexable collection (for example
1:nor['x','y','z']), ora type: the set of values to pick from is then equivalent to
typemin(S):typemax(S)for integers (this is not applicable toBigInt), and to $[0, 1)$ for floating point numbers;
S defaults to Float64.
Base.Random.rand! — Function.rand!([rng=GLOBAL_RNG], A, [coll])Populate the array A with random values. If the indexable collection coll is specified, the values are picked randomly from coll. This is equivalent to copy!(A, rand(rng, coll, size(A))) or copy!(A, rand(rng, eltype(A), size(A))) but without allocating a new array.
Example
julia> rng = MersenneTwister(1234);
julia> rand!(rng, zeros(5))
5-element Array{Float64,1}:
0.590845
0.766797
0.566237
0.460085
0.794026Base.Random.bitrand — Function.bitrand([rng=GLOBAL_RNG], [dims...])Generate a BitArray of random boolean values.
Example
julia> rng = MersenneTwister(1234);
julia> bitrand(rng, 10)
10-element BitArray{1}:
true
true
true
false
true
false
false
true
false
trueBase.Random.randn — Function.randn([rng=GLOBAL_RNG], [T=Float64], [dims...])Generate a normally-distributed random number of type T with mean 0 and standard deviation 1. Optionally generate an array of normally-distributed random numbers. The Base module currently provides an implementation for the types Float16, Float32, and Float64 (the default).
Examples
julia> rng = MersenneTwister(1234);
julia> randn(rng, Float64)
0.8673472019512456
julia> randn(rng, Float32, (2, 4))
2×4 Array{Float32,2}:
-0.901744 -0.902914 2.21188 -0.271735
-0.494479 0.864401 0.532813 0.502334Base.Random.randn! — Function.randn!([rng=GLOBAL_RNG], A::AbstractArray) -> AFill the array A with normally-distributed (mean 0, standard deviation 1) random numbers. Also see the rand function.
Example
julia> rng = MersenneTwister(1234);
julia> randn!(rng, zeros(5))
5-element Array{Float64,1}:
0.867347
-0.901744
-0.494479
-0.902914
0.864401Base.Random.randexp — Function.randexp([rng=GLOBAL_RNG], [T=Float64], [dims...])Generate a random number of type T according to the exponential distribution with scale 1. Optionally generate an array of such random numbers. The Base module currently provides an implementation for the types Float16, Float32, and Float64 (the default).
Examples
julia> rng = MersenneTwister(1234);
julia> randexp(rng, Float32)
2.4835055f0
julia> randexp(rng, 3, 3)
3×3 Array{Float64,2}:
1.5167 1.30652 0.344435
0.604436 2.78029 0.418516
0.695867 0.693292 0.643644Base.Random.randexp! — Function.randexp!([rng=GLOBAL_RNG], A::AbstractArray) -> AFill the array A with random numbers following the exponential distribution (with scale 1).
Example
julia> rng = MersenneTwister(1234);
julia> randexp!(rng, zeros(5))
5-element Array{Float64,1}:
2.48351
1.5167
0.604436
0.695867
1.30652Base.Random.randjump — Function.randjump(r::MersenneTwister, jumps::Integer, [jumppoly::AbstractString=dSFMT.JPOLY1e21]) -> Vector{MersenneTwister}Create an array of the size jumps of initialized MersenneTwister RNG objects. The first RNG object given as a parameter and following MersenneTwister RNGs in the array are initialized such that a state of the RNG object in the array would be moved forward (without generating numbers) from a previous RNG object array element on a particular number of steps encoded by the jump polynomial jumppoly.
Default jump polynomial moves forward MersenneTwister RNG state by 10^20 steps.