Collections and Data Structures
Iteration
Sequential iteration is implemented by the iterate
function. The general for
loop:
for i in iter # or "for i = iter"
# body
end
is translated into:
next = iterate(iter)
while next !== nothing
(i, state) = next
# body
next = iterate(iter, state)
end
The state
object may be anything, and should be chosen appropriately for each iterable type. See the manual section on the iteration interface for more details about defining a custom iterable type.
Base.iterate
— Functioniterate(iter [, state]) -> Union{Nothing, Tuple{Any, Any}}
Advance the iterator to obtain the next element. If no elements remain, nothing
should be returned. Otherwise, a 2-tuple of the next element and the new iteration state should be returned.
Base.IteratorSize
— TypeIteratorSize(itertype::Type) -> IteratorSize
Given the type of an iterator, return one of the following values:
SizeUnknown()
if the length (number of elements) cannot be determined in advance.HasLength()
if there is a fixed, finite length.HasShape{N}()
if there is a known length plus a notion of multidimensional shape (as for an array). In this caseN
should give the number of dimensions, and theaxes
function is valid for the iterator.IsInfinite()
if the iterator yields values forever.
The default value (for iterators that do not define this function) is HasLength()
. This means that most iterators are assumed to implement length
.
This trait is generally used to select between algorithms that pre-allocate space for their result, and algorithms that resize their result incrementally.
julia> Base.IteratorSize(1:5)
Base.HasShape{1}()
julia> Base.IteratorSize((2,3))
Base.HasLength()
Base.IteratorEltype
— TypeIteratorEltype(itertype::Type) -> IteratorEltype
Given the type of an iterator, return one of the following values:
EltypeUnknown()
if the type of elements yielded by the iterator is not known in advance.HasEltype()
if the element type is known, andeltype
would return a meaningful value.
HasEltype()
is the default, since iterators are assumed to implement eltype
.
This trait is generally used to select between algorithms that pre-allocate a specific type of result, and algorithms that pick a result type based on the types of yielded values.
julia> Base.IteratorEltype(1:5)
Base.HasEltype()
Fully implemented by:
AbstractRange
UnitRange
Tuple
Number
AbstractArray
BitSet
IdDict
Dict
WeakKeyDict
EachLine
AbstractString
Set
Pair
NamedTuple
Constructors and Types
Base.AbstractRange
— TypeAbstractRange{T}
Supertype for ranges with elements of type T
. UnitRange
and other types are subtypes of this.
Base.OrdinalRange
— TypeOrdinalRange{T, S} <: AbstractRange{T}
Supertype for ordinal ranges with elements of type T
with spacing(s) of type S
. The steps should be always-exact multiples of oneunit
, and T
should be a "discrete" type, which cannot have values smaller than oneunit
. For example, Integer
or Date
types would qualify, whereas Float64
would not (since this type can represent values smaller than oneunit(Float64)
. UnitRange
, StepRange
, and other types are subtypes of this.
Base.AbstractUnitRange
— TypeAbstractUnitRange{T} <: OrdinalRange{T, T}
Supertype for ranges with a step size of oneunit(T)
with elements of type T
. UnitRange
and other types are subtypes of this.
Base.StepRange
— TypeStepRange{T, S} <: OrdinalRange{T, S}
Ranges with elements of type T
with spacing of type S
. The step between each element is constant, and the range is defined in terms of a start
and stop
of type T
and a step
of type S
. Neither T
nor S
should be floating point types. The syntax a:b:c
with b > 1
and a
, b
, and c
all integers creates a StepRange
.
Examples
julia> collect(StepRange(1, Int8(2), 10))
5-element Array{Int64,1}:
1
3
5
7
9
julia> typeof(StepRange(1, Int8(2), 10))
StepRange{Int64,Int8}
julia> typeof(1:3:6)
StepRange{Int64,Int64}
Base.UnitRange
— TypeUnitRange{T<:Real}
A range parameterized by a start
and stop
of type T
, filled with elements spaced by 1
from start
until stop
is exceeded. The syntax a:b
with a
and b
both Integer
s creates a UnitRange
.
Examples
julia> collect(UnitRange(2.3, 5.2))
3-element Array{Float64,1}:
2.3
3.3
4.3
julia> typeof(1:10)
UnitRange{Int64}
Base.LinRange
— TypeLinRange{T}
A range with len
linearly spaced elements between its start
and stop
. The size of the spacing is controlled by len
, which must be an Int
.
Examples
julia> LinRange(1.5, 5.5, 9)
9-element LinRange{Float64}:
1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5
General Collections
Base.isempty
— Functionisempty(collection) -> Bool
Determine whether a collection is empty (has no elements).
Examples
julia> isempty([])
true
julia> isempty([1 2 3])
false
isempty(condition)
Return true
if no tasks are waiting on the condition, false
otherwise.
Base.empty!
— Functionempty!(collection) -> collection
Remove all elements from a collection
.
Examples
julia> A = Dict("a" => 1, "b" => 2)
Dict{String,Int64} with 2 entries:
"b" => 2
"a" => 1
julia> empty!(A);
julia> A
Dict{String,Int64} with 0 entries
Base.length
— Functionlength(collection) -> Integer
Return the number of elements in the collection.
Use lastindex
to get the last valid index of an indexable collection.
Examples
julia> length(1:5)
5
julia> length([1, 2, 3, 4])
4
julia> length([1 2; 3 4])
4
Fully implemented by:
AbstractRange
UnitRange
Tuple
Number
AbstractArray
BitSet
IdDict
Dict
WeakKeyDict
AbstractString
Set
NamedTuple
Iterable Collections
Base.in
— Functionin(item, collection) -> Bool
∈(item, collection) -> Bool
∋(collection, item) -> Bool
Determine whether an item is in the given collection, in the sense that it is ==
to one of the values generated by iterating over the collection. Returns a Bool
value, except if item
is missing
or collection
contains missing
but not item
, in which case missing
is returned (three-valued logic, matching the behavior of any
and ==
).
Some collections follow a slightly different definition. For example, Set
s check whether the item isequal
to one of the elements. Dict
s look for key=>value
pairs, and the key is compared using isequal
. To test for the presence of a key in a dictionary, use haskey
or k in keys(dict)
. For these collections, the result is always a Bool
and never missing
.
Examples
julia> a = 1:3:20
1:3:19
julia> 4 in a
true
julia> 5 in a
false
julia> missing in [1, 2]
missing
julia> 1 in [2, missing]
missing
julia> 1 in [1, missing]
true
julia> missing in Set([1, 2])
false
Base.:∉
— Function∉(item, collection) -> Bool
∌(collection, item) -> Bool
Negation of ∈
and ∋
, i.e. checks that item
is not in collection
.
Examples
julia> 1 ∉ 2:4
true
julia> 1 ∉ 1:3
false
Base.eltype
— Functioneltype(type)
Determine the type of the elements generated by iterating a collection of the given type
. For dictionary types, this will be a Pair{KeyType,ValType}
. The definition eltype(x) = eltype(typeof(x))
is provided for convenience so that instances can be passed instead of types. However the form that accepts a type argument should be defined for new types.
Examples
julia> eltype(fill(1f0, (2,2)))
Float32
julia> eltype(fill(0x1, (2,2)))
UInt8
Base.indexin
— Functionindexin(a, b)
Return an array containing the first index in b
for each value in a
that is a member of b
. The output array contains nothing
wherever a
is not a member of b
.
Examples
julia> a = ['a', 'b', 'c', 'b', 'd', 'a'];
julia> b = ['a', 'b', 'c'];
julia> indexin(a, b)
6-element Array{Union{Nothing, Int64},1}:
1
2
3
2
nothing
1
julia> indexin(b, a)
3-element Array{Union{Nothing, Int64},1}:
1
2
3
Base.unique
— Functionunique(itr)
Return an array containing only the unique elements of collection itr
, as determined by isequal
, in the order that the first of each set of equivalent elements originally appears. The element type of the input is preserved.
Examples
julia> unique([1, 2, 6, 2])
3-element Array{Int64,1}:
1
2
6
julia> unique(Real[1, 1.0, 2])
2-element Array{Real,1}:
1
2
unique(f, itr)
Returns an array containing one value from itr
for each unique value produced by f
applied to elements of itr
.
Examples
julia> unique(x -> x^2, [1, -1, 3, -3, 4])
3-element Array{Int64,1}:
1
3
4
unique(A::AbstractArray; dims::Int)
Return unique regions of A
along dimension dims
.
Examples
julia> A = map(isodd, reshape(Vector(1:8), (2,2,2)))
2×2×2 Array{Bool,3}:
[:, :, 1] =
1 1
0 0
[:, :, 2] =
1 1
0 0
julia> unique(A)
2-element Array{Bool,1}:
1
0
julia> unique(A, dims=2)
2×1×2 Array{Bool,3}:
[:, :, 1] =
1
0
[:, :, 2] =
1
0
julia> unique(A, dims=3)
2×2×1 Array{Bool,3}:
[:, :, 1] =
1 1
0 0
Base.unique!
— Functionunique!(f, A::AbstractVector)
Selects one value from A
for each unique value produced by f
applied to elements of A
, then return the modified A.
This method is available as of Julia 1.1.
Examples
julia> unique!(x -> x^2, [1, -1, 3, -3, 4])
3-element Array{Int64,1}:
1
3
4
julia> unique!(n -> n%3, [5, 1, 8, 9, 3, 4, 10, 7, 2, 6])
3-element Array{Int64,1}:
5
1
9
julia> unique!(iseven, [2, 3, 5, 7, 9])
2-element Array{Int64,1}:
2
3
unique!(A::AbstractVector)
Remove duplicate items as determined by isequal
, then return the modified A
. unique!
will return the elements of A
in the order that they occur. If you do not care about the order of the returned data, then calling (sort!(A); unique!(A))
will be much more efficient as long as the elements of A
can be sorted.
Examples
julia> unique!([1, 1, 1])
1-element Array{Int64,1}:
1
julia> A = [7, 3, 2, 3, 7, 5];
julia> unique!(A)
4-element Array{Int64,1}:
7
3
2
5
julia> B = [7, 6, 42, 6, 7, 42];
julia> sort!(B); # unique! is able to process sorted data much more efficiently.
julia> unique!(B)
3-element Array{Int64,1}:
6
7
42
Base.allunique
— Functionallunique(itr) -> Bool
Return true
if all values from itr
are distinct when compared with isequal
.
Examples
julia> a = [1; 2; 3]
3-element Array{Int64,1}:
1
2
3
julia> allunique([a, a])
false
Base.reduce
— Methodreduce(op, itr; [init])
Reduce the given collection itr
with the given binary operator op
. If provided, the initial value init
must be a neutral element for op
that will be returned for empty collections. It is unspecified whether init
is used for non-empty collections.
For empty collections, providing init
will be necessary, except for some special cases (e.g. when op
is one of +
, *
, max
, min
, &
, |
) when Julia can determine the neutral element of op
.
Reductions for certain commonly-used operators may have special implementations, and should be used instead: maximum(itr)
, minimum(itr)
, sum(itr)
, prod(itr)
, any(itr)
, all(itr)
.
The associativity of the reduction is implementation dependent. This means that you can't use non-associative operations like -
because it is undefined whether reduce(-,[1,2,3])
should be evaluated as (1-2)-3
or 1-(2-3)
. Use foldl
or foldr
instead for guaranteed left or right associativity.
Some operations accumulate error. Parallelism will be easier if the reduction can be executed in groups. Future versions of Julia might change the algorithm. Note that the elements are not reordered if you use an ordered collection.
Examples
julia> reduce(*, [2; 3; 4])
24
julia> reduce(*, [2; 3; 4]; init=-1)
-24
Base.foldl
— Methodfoldl(op, itr; [init])
Like reduce
, but with guaranteed left associativity. If provided, the keyword argument init
will be used exactly once. In general, it will be necessary to provide init
to work with empty collections.
Examples
julia> foldl(=>, 1:4)
((1 => 2) => 3) => 4
julia> foldl(=>, 1:4; init=0)
(((0 => 1) => 2) => 3) => 4
Base.foldr
— Methodfoldr(op, itr; [init])
Like reduce
, but with guaranteed right associativity. If provided, the keyword argument init
will be used exactly once. In general, it will be necessary to provide init
to work with empty collections.
Examples
julia> foldr(=>, 1:4)
1 => (2 => (3 => 4))
julia> foldr(=>, 1:4; init=0)
1 => (2 => (3 => (4 => 0)))
Base.maximum
— Functionmaximum(f, itr)
Returns the largest result of calling function f
on each element of itr
.
Examples
julia> maximum(length, ["Julion", "Julia", "Jule"])
6
maximum(itr)
Returns the largest element in a collection.
Examples
julia> maximum(-20.5:10)
9.5
julia> maximum([1,2,3])
3
maximum(A::AbstractArray; dims)
Compute the maximum value of an array over the given dimensions. See also the max(a,b)
function to take the maximum of two or more arguments, which can be applied elementwise to arrays via max.(a,b)
.
Examples
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> maximum(A, dims=1)
1×2 Array{Int64,2}:
3 4
julia> maximum(A, dims=2)
2×1 Array{Int64,2}:
2
4
Base.maximum!
— Functionmaximum!(r, A)
Compute the maximum value of A
over the singleton dimensions of r
, and write results to r
.
Examples
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> maximum!([1; 1], A)
2-element Array{Int64,1}:
2
4
julia> maximum!([1 1], A)
1×2 Array{Int64,2}:
3 4
Base.minimum
— Functionminimum(f, itr)
Returns the smallest result of calling function f
on each element of itr
.
Examples
julia> minimum(length, ["Julion", "Julia", "Jule"])
4
minimum(itr)
Returns the smallest element in a collection.
Examples
julia> minimum(-20.5:10)
-20.5
julia> minimum([1,2,3])
1
minimum(A::AbstractArray; dims)
Compute the minimum value of an array over the given dimensions. See also the min(a,b)
function to take the minimum of two or more arguments, which can be applied elementwise to arrays via min.(a,b)
.
Examples
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> minimum(A, dims=1)
1×2 Array{Int64,2}:
1 2
julia> minimum(A, dims=2)
2×1 Array{Int64,2}:
1
3
Base.minimum!
— Functionminimum!(r, A)
Compute the minimum value of A
over the singleton dimensions of r
, and write results to r
.
Examples
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> minimum!([1; 1], A)
2-element Array{Int64,1}:
1
3
julia> minimum!([1 1], A)
1×2 Array{Int64,2}:
1 2
Base.extrema
— Functionextrema(itr) -> Tuple
Compute both the minimum and maximum element in a single pass, and return them as a 2-tuple.
Examples
julia> extrema(2:10)
(2, 10)
julia> extrema([9,pi,4.5])
(3.141592653589793, 9.0)
extrema(f, itr) -> Tuple
Compute both the minimum and maximum of f
applied to each element in itr
and return them as a 2-tuple. Only one pass is made over itr
.
This method requires Julia 1.2 or later.
Examples
julia> extrema(sin, 0:π)
(0.0, 0.9092974268256817)
extrema(A::AbstractArray; dims) -> Array{Tuple}
Compute the minimum and maximum elements of an array over the given dimensions.
Examples
julia> A = reshape(Vector(1:2:16), (2,2,2))
2×2×2 Array{Int64,3}:
[:, :, 1] =
1 5
3 7
[:, :, 2] =
9 13
11 15
julia> extrema(A, dims = (1,2))
1×1×2 Array{Tuple{Int64,Int64},3}:
[:, :, 1] =
(1, 7)
[:, :, 2] =
(9, 15)
extrema(f, A::AbstractArray; dims) -> Array{Tuple}
Compute the minimum and maximum of f
applied to each element in the given dimensions of A
.
This method requires Julia 1.2 or later.
Base.argmax
— Functionargmax(itr) -> Integer
Return the index of the maximum element in a collection. If there are multiple maximal elements, then the first one will be returned.
The collection must not be empty.
Examples
julia> argmax([8,0.1,-9,pi])
1
julia> argmax([1,7,7,6])
2
julia> argmax([1,7,7,NaN])
4
argmax(A; dims) -> indices
For an array input, return the indices of the maximum elements over the given dimensions. NaN
is treated as greater than all other values.
Examples
julia> A = [1.0 2; 3 4]
2×2 Array{Float64,2}:
1.0 2.0
3.0 4.0
julia> argmax(A, dims=1)
1×2 Array{CartesianIndex{2},2}:
CartesianIndex(2, 1) CartesianIndex(2, 2)
julia> argmax(A, dims=2)
2×1 Array{CartesianIndex{2},2}:
CartesianIndex(1, 2)
CartesianIndex(2, 2)
Base.argmin
— Functionargmin(itr) -> Integer
Return the index of the minimum element in a collection. If there are multiple minimal elements, then the first one will be returned.
The collection must not be empty.
Examples
julia> argmin([8,0.1,-9,pi])
3
julia> argmin([7,1,1,6])
2
julia> argmin([7,1,1,NaN])
4
argmin(A; dims) -> indices
For an array input, return the indices of the minimum elements over the given dimensions. NaN
is treated as less than all other values.
Examples
julia> A = [1.0 2; 3 4]
2×2 Array{Float64,2}:
1.0 2.0
3.0 4.0
julia> argmin(A, dims=1)
1×2 Array{CartesianIndex{2},2}:
CartesianIndex(1, 1) CartesianIndex(1, 2)
julia> argmin(A, dims=2)
2×1 Array{CartesianIndex{2},2}:
CartesianIndex(1, 1)
CartesianIndex(2, 1)
Base.findmax
— Functionfindmax(itr) -> (x, index)
Return the maximum element of the collection itr
and its index. If there are multiple maximal elements, then the first one will be returned. If any data element is NaN
, this element is returned. The result is in line with max
.
The collection must not be empty.
Examples
julia> findmax([8,0.1,-9,pi])
(8.0, 1)
julia> findmax([1,7,7,6])
(7, 2)
julia> findmax([1,7,7,NaN])
(NaN, 4)
findmax(A; dims) -> (maxval, index)
For an array input, returns the value and index of the maximum over the given dimensions. NaN
is treated as greater than all other values.
Examples
julia> A = [1.0 2; 3 4]
2×2 Array{Float64,2}:
1.0 2.0
3.0 4.0
julia> findmax(A, dims=1)
([3.0 4.0], CartesianIndex{2}[CartesianIndex(2, 1) CartesianIndex(2, 2)])
julia> findmax(A, dims=2)
([2.0; 4.0], CartesianIndex{2}[CartesianIndex(1, 2); CartesianIndex(2, 2)])
Base.findmin
— Functionfindmin(itr) -> (x, index)
Return the minimum element of the collection itr
and its index. If there are multiple minimal elements, then the first one will be returned. If any data element is NaN
, this element is returned. The result is in line with min
.
The collection must not be empty.
Examples
julia> findmin([8,0.1,-9,pi])
(-9.0, 3)
julia> findmin([7,1,1,6])
(1, 2)
julia> findmin([7,1,1,NaN])
(NaN, 4)
findmin(A; dims) -> (minval, index)
For an array input, returns the value and index of the minimum over the given dimensions. NaN
is treated as less than all other values.
Examples
julia> A = [1.0 2; 3 4]
2×2 Array{Float64,2}:
1.0 2.0
3.0 4.0
julia> findmin(A, dims=1)
([1.0 2.0], CartesianIndex{2}[CartesianIndex(1, 1) CartesianIndex(1, 2)])
julia> findmin(A, dims=2)
([1.0; 3.0], CartesianIndex{2}[CartesianIndex(1, 1); CartesianIndex(2, 1)])
Base.findmax!
— Functionfindmax!(rval, rind, A) -> (maxval, index)
Find the maximum of A
and the corresponding linear index along singleton dimensions of rval
and rind
, and store the results in rval
and rind
. NaN
is treated as greater than all other values.
Base.findmin!
— Functionfindmin!(rval, rind, A) -> (minval, index)
Find the minimum of A
and the corresponding linear index along singleton dimensions of rval
and rind
, and store the results in rval
and rind
. NaN
is treated as less than all other values.
Base.sum
— Functionsum(f, itr)
Sum the results of calling function f
on each element of itr
.
The return type is Int
for signed integers of less than system word size, and UInt
for unsigned integers of less than system word size. For all other arguments, a common return type is found to which all arguments are promoted.
Examples
julia> sum(abs2, [2; 3; 4])
29
Note the important difference between sum(A)
and reduce(+, A)
for arrays with small integer eltype:
julia> sum(Int8[100, 28])
128
julia> reduce(+, Int8[100, 28])
-128
In the former case, the integers are widened to system word size and therefore the result is 128. In the latter case, no such widening happens and integer overflow results in -128.
sum(itr)
Returns the sum of all elements in a collection.
The return type is Int
for signed integers of less than system word size, and UInt
for unsigned integers of less than system word size. For all other arguments, a common return type is found to which all arguments are promoted.
Examples
julia> sum(1:20)
210
sum(A::AbstractArray; dims)
Sum elements of an array over the given dimensions.
Examples
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> sum(A, dims=1)
1×2 Array{Int64,2}:
4 6
julia> sum(A, dims=2)
2×1 Array{Int64,2}:
3
7
Base.sum!
— Functionsum!(r, A)
Sum elements of A
over the singleton dimensions of r
, and write results to r
.
Examples
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> sum!([1; 1], A)
2-element Array{Int64,1}:
3
7
julia> sum!([1 1], A)
1×2 Array{Int64,2}:
4 6
Base.prod
— Functionprod(f, itr)
Returns the product of f
applied to each element of itr
.
The return type is Int
for signed integers of less than system word size, and UInt
for unsigned integers of less than system word size. For all other arguments, a common return type is found to which all arguments are promoted.
Examples
julia> prod(abs2, [2; 3; 4])
576
prod(itr)
Returns the product of all elements of a collection.
The return type is Int
for signed integers of less than system word size, and UInt
for unsigned integers of less than system word size. For all other arguments, a common return type is found to which all arguments are promoted.
Examples
julia> prod(1:20)
2432902008176640000
prod(A::AbstractArray; dims)
Multiply elements of an array over the given dimensions.
Examples
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> prod(A, dims=1)
1×2 Array{Int64,2}:
3 8
julia> prod(A, dims=2)
2×1 Array{Int64,2}:
2
12
Base.prod!
— Functionprod!(r, A)
Multiply elements of A
over the singleton dimensions of r
, and write results to r
.
Examples
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> prod!([1; 1], A)
2-element Array{Int64,1}:
2
12
julia> prod!([1 1], A)
1×2 Array{Int64,2}:
3 8
Base.any
— Methodany(itr) -> Bool
Test whether any elements of a boolean collection are true
, returning true
as soon as the first true
value in itr
is encountered (short-circuiting).
If the input contains missing
values, return missing
if all non-missing values are false
(or equivalently, if the input contains no true
value), following three-valued logic.
Examples
julia> a = [true,false,false,true]
4-element Array{Bool,1}:
1
0
0
1
julia> any(a)
true
julia> any((println(i); v) for (i, v) in enumerate(a))
1
true
julia> any([missing, true])
true
julia> any([false, missing])
missing
Base.any
— Methodany(p, itr) -> Bool
Determine whether predicate p
returns true
for any elements of itr
, returning true
as soon as the first item in itr
for which p
returns true
is encountered (short-circuiting).
If the input contains missing
values, return missing
if all non-missing values are false
(or equivalently, if the input contains no true
value), following three-valued logic.
Examples
julia> any(i->(4<=i<=6), [3,5,7])
true
julia> any(i -> (println(i); i > 3), 1:10)
1
2
3
4
true
julia> any(i -> i > 0, [1, missing])
true
julia> any(i -> i > 0, [-1, missing])
missing
julia> any(i -> i > 0, [-1, 0])
false
Base.any!
— Functionany!(r, A)
Test whether any values in A
along the singleton dimensions of r
are true
, and write results to r
.
Examples
julia> A = [true false; true false]
2×2 Array{Bool,2}:
1 0
1 0
julia> any!([1; 1], A)
2-element Array{Int64,1}:
1
1
julia> any!([1 1], A)
1×2 Array{Int64,2}:
1 0
Base.all
— Methodall(itr) -> Bool
Test whether all elements of a boolean collection are true
, returning false
as soon as the first false
value in itr
is encountered (short-circuiting).
If the input contains missing
values, return missing
if all non-missing values are true
(or equivalently, if the input contains no false
value), following three-valued logic.
Examples
julia> a = [true,false,false,true]
4-element Array{Bool,1}:
1
0
0
1
julia> all(a)
false
julia> all((println(i); v) for (i, v) in enumerate(a))
1
2
false
julia> all([missing, false])
false
julia> all([true, missing])
missing
Base.all
— Methodall(p, itr) -> Bool
Determine whether predicate p
returns true
for all elements of itr
, returning false
as soon as the first item in itr
for which p
returns false
is encountered (short-circuiting).
If the input contains missing
values, return missing
if all non-missing values are true
(or equivalently, if the input contains no false
value), following three-valued logic.
Examples
julia> all(i->(4<=i<=6), [4,5,6])
true
julia> all(i -> (println(i); i < 3), 1:10)
1
2
3
false
julia> all(i -> i > 0, [1, missing])
missing
julia> all(i -> i > 0, [-1, missing])
false
julia> all(i -> i > 0, [1, 2])
true
Base.all!
— Functionall!(r, A)
Test whether all values in A
along the singleton dimensions of r
are true
, and write results to r
.
Examples
julia> A = [true false; true false]
2×2 Array{Bool,2}:
1 0
1 0
julia> all!([1; 1], A)
2-element Array{Int64,1}:
0
0
julia> all!([1 1], A)
1×2 Array{Int64,2}:
1 0
Base.count
— Functioncount(p, itr) -> Integer
count(itr) -> Integer
Count the number of elements in itr
for which predicate p
returns true
. If p
is omitted, counts the number of true
elements in itr
(which should be a collection of boolean values).
Examples
julia> count(i->(4<=i<=6), [2,3,4,5,6])
3
julia> count([true, false, true, true])
3
count(
pattern::Union{AbstractString,Regex},
string::AbstractString;
overlap::Bool = false,
)
Return the number of matches for pattern
in string
. This is equivalent to calling length(findall(pattern, string))
but more efficient.
If overlap=true
, the matching sequences are allowed to overlap indices in the original string, otherwise they must be from disjoint character ranges.
Base.any
— Methodany(p, itr) -> Bool
Determine whether predicate p
returns true
for any elements of itr
, returning true
as soon as the first item in itr
for which p
returns true
is encountered (short-circuiting).
If the input contains missing
values, return missing
if all non-missing values are false
(or equivalently, if the input contains no true
value), following three-valued logic.
Examples
julia> any(i->(4<=i<=6), [3,5,7])
true
julia> any(i -> (println(i); i > 3), 1:10)
1
2
3
4
true
julia> any(i -> i > 0, [1, missing])
true
julia> any(i -> i > 0, [-1, missing])
missing
julia> any(i -> i > 0, [-1, 0])
false
Base.all
— Methodall(p, itr) -> Bool
Determine whether predicate p
returns true
for all elements of itr
, returning false
as soon as the first item in itr
for which p
returns false
is encountered (short-circuiting).
If the input contains missing
values, return missing
if all non-missing values are true
(or equivalently, if the input contains no false
value), following three-valued logic.
Examples
julia> all(i->(4<=i<=6), [4,5,6])
true
julia> all(i -> (println(i); i < 3), 1:10)
1
2
3
false
julia> all(i -> i > 0, [1, missing])
missing
julia> all(i -> i > 0, [-1, missing])
false
julia> all(i -> i > 0, [1, 2])
true
Base.foreach
— Functionforeach(f, c...) -> Nothing
Call function f
on each element of iterable c
. For multiple iterable arguments, f
is called elementwise. foreach
should be used instead of map
when the results of f
are not needed, for example in foreach(println, array)
.
Examples
julia> a = 1:3:7;
julia> foreach(x -> println(x^2), a)
1
16
49
Base.map
— Functionmap(f, c...) -> collection
Transform collection c
by applying f
to each element. For multiple collection arguments, apply f
elementwise.
See also: mapslices
Examples
julia> map(x -> x * 2, [1, 2, 3])
3-element Array{Int64,1}:
2
4
6
julia> map(+, [1, 2, 3], [10, 20, 30])
3-element Array{Int64,1}:
11
22
33
Base.map!
— Functionmap!(function, destination, collection...)
Like map
, but stores the result in destination
rather than a new collection. destination
must be at least as large as the first collection.
Examples
julia> a = zeros(3);
julia> map!(x -> x * 2, a, [1, 2, 3]);
julia> a
3-element Array{Float64,1}:
2.0
4.0
6.0
map!(f, values(dict::AbstractDict))
Modifies dict
by transforming each value from val
to f(val)
. Note that the type of dict
cannot be changed: if f(val)
is not an instance of the value type of dict
then it will be converted to the value type if possible and otherwise raise an error.
map!(f, values(dict::AbstractDict))
requires Julia 1.2 or later.
Examples
julia> d = Dict(:a => 1, :b => 2)
Dict{Symbol,Int64} with 2 entries:
:a => 1
:b => 2
julia> map!(v -> v-1, values(d))
Base.ValueIterator for a Dict{Symbol,Int64} with 2 entries. Values:
0
1
Base.mapreduce
— Methodmapreduce(f, op, itrs...; [init])
Apply function f
to each element(s) in itrs
, and then reduce the result using the binary function op
. If provided, init
must be a neutral element for op
that will be returned for empty collections. It is unspecified whether init
is used for non-empty collections. In general, it will be necessary to provide init
to work with empty collections.
mapreduce
is functionally equivalent to calling reduce(op, map(f, itr); init=init)
, but will in general execute faster since no intermediate collection needs to be created. See documentation for reduce
and map
.
mapreduce
with multiple iterators requires Julia 1.2 or later.
Examples
julia> mapreduce(x->x^2, +, [1:3;]) # == 1 + 4 + 9
14
The associativity of the reduction is implementation-dependent. Additionally, some implementations may reuse the return value of f
for elements that appear multiple times in itr
. Use mapfoldl
or mapfoldr
instead for guaranteed left or right associativity and invocation of f
for every value.
Base.mapfoldl
— Methodmapfoldl(f, op, itr; [init])
Like mapreduce
, but with guaranteed left associativity, as in foldl
. If provided, the keyword argument init
will be used exactly once. In general, it will be necessary to provide init
to work with empty collections.
Base.mapfoldr
— Methodmapfoldr(f, op, itr; [init])
Like mapreduce
, but with guaranteed right associativity, as in foldr
. If provided, the keyword argument init
will be used exactly once. In general, it will be necessary to provide init
to work with empty collections.
Base.first
— Functionfirst(coll)
Get the first element of an iterable collection. Return the start point of an AbstractRange
even if it is empty.
Examples
julia> first(2:2:10)
2
julia> first([1; 2; 3; 4])
1
first(s::AbstractString, n::Integer)
Get a string consisting of the first n
characters of s
.
julia> first("∀ϵ≠0: ϵ²>0", 0)
""
julia> first("∀ϵ≠0: ϵ²>0", 1)
"∀"
julia> first("∀ϵ≠0: ϵ²>0", 3)
"∀ϵ≠"
Base.last
— Functionlast(coll)
Get the last element of an ordered collection, if it can be computed in O(1) time. This is accomplished by calling lastindex
to get the last index. Return the end point of an AbstractRange
even if it is empty.
Examples
julia> last(1:2:10)
9
julia> last([1; 2; 3; 4])
4
last(s::AbstractString, n::Integer)
Get a string consisting of the last n
characters of s
.
julia> last("∀ϵ≠0: ϵ²>0", 0)
""
julia> last("∀ϵ≠0: ϵ²>0", 1)
"0"
julia> last("∀ϵ≠0: ϵ²>0", 3)
"²>0"
Base.front
— Functionfront(x::Tuple)::Tuple
Return a Tuple
consisting of all but the last component of x
.
Examples
julia> Base.front((1,2,3))
(1, 2)
julia> Base.front(())
ERROR: ArgumentError: Cannot call front on an empty tuple.
Base.tail
— Functiontail(x::Tuple)::Tuple
Return a Tuple
consisting of all but the first component of x
.
Examples
julia> Base.tail((1,2,3))
(2, 3)
julia> Base.tail(())
ERROR: ArgumentError: Cannot call tail on an empty tuple.
Base.step
— Functionstep(r)
Get the step size of an AbstractRange
object.
Examples
julia> step(1:10)
1
julia> step(1:2:10)
2
julia> step(2.5:0.3:10.9)
0.3
julia> step(range(2.5, stop=10.9, length=85))
0.1
Base.collect
— Methodcollect(collection)
Return an Array
of all items in a collection or iterator. For dictionaries, returns Pair{KeyType, ValType}
. If the argument is array-like or is an iterator with the HasShape
trait, the result will have the same shape and number of dimensions as the argument.
Examples
julia> collect(1:2:13)
7-element Array{Int64,1}:
1
3
5
7
9
11
13
Base.collect
— Methodcollect(element_type, collection)
Return an Array
with the given element type of all items in a collection or iterable. The result has the same shape and number of dimensions as collection
.
Examples
julia> collect(Float64, 1:2:5)
3-element Array{Float64,1}:
1.0
3.0
5.0
Base.filter
— Functionfilter(f, a::AbstractArray)
Return a copy of a
, removing elements for which f
is false
. The function f
is passed one argument.
Examples
julia> a = 1:10
1:10
julia> filter(isodd, a)
5-element Array{Int64,1}:
1
3
5
7
9
filter(f, d::AbstractDict)
Return a copy of d
, removing elements for which f
is false
. The function f
is passed key=>value
pairs.
Examples
julia> d = Dict(1=>"a", 2=>"b")
Dict{Int64,String} with 2 entries:
2 => "b"
1 => "a"
julia> filter(p->isodd(p.first), d)
Dict{Int64,String} with 1 entry:
1 => "a"
filter(f, itr::SkipMissing{<:AbstractArray})
Return a vector similar to the array wrapped by the given SkipMissing
iterator but with all missing elements and those for which f
returns false
removed.
This method requires Julia 1.2 or later.
Examples
julia> x = [1 2; missing 4]
2×2 Array{Union{Missing, Int64},2}:
1 2
missing 4
julia> filter(isodd, skipmissing(x))
1-element Array{Int64,1}:
1
Base.filter!
— Functionfilter!(f, a::AbstractVector)
Update a
, removing elements for which f
is false
. The function f
is passed one argument.
Examples
julia> filter!(isodd, Vector(1:10))
5-element Array{Int64,1}:
1
3
5
7
9
filter!(f, d::AbstractDict)
Update d
, removing elements for which f
is false
. The function f
is passed key=>value
pairs.
Example
julia> d = Dict(1=>"a", 2=>"b", 3=>"c")
Dict{Int64,String} with 3 entries:
2 => "b"
3 => "c"
1 => "a"
julia> filter!(p->isodd(p.first), d)
Dict{Int64,String} with 2 entries:
3 => "c"
1 => "a"
Base.replace
— Methodreplace(A, old_new::Pair...; [count::Integer])
Return a copy of collection A
where, for each pair old=>new
in old_new
, all occurrences of old
are replaced by new
. Equality is determined using isequal
. If count
is specified, then replace at most count
occurrences in total.
The element type of the result is chosen using promotion (see promote_type
) based on the element type of A
and on the types of the new
values in pairs. If count
is omitted and the element type of A
is a Union
, the element type of the result will not include singleton types which are replaced with values of a different type: for example, Union{T,Missing}
will become T
if missing
is replaced.
See also replace!
.
Examples
julia> replace([1, 2, 1, 3], 1=>0, 2=>4, count=2)
4-element Array{Int64,1}:
0
4
1
3
julia> replace([1, missing], missing=>0)
2-element Array{Int64,1}:
1
0
Base.replace
— Methodreplace(new::Function, A; [count::Integer])
Return a copy of A
where each value x
in A
is replaced by new(x)
If count
is specified, then replace at most count
values in total (replacements being defined as new(x) !== x
).
Examples
julia> replace(x -> isodd(x) ? 2x : x, [1, 2, 3, 4])
4-element Array{Int64,1}:
2
2
6
4
julia> replace(Dict(1=>2, 3=>4)) do kv
first(kv) < 3 ? first(kv)=>3 : kv
end
Dict{Int64,Int64} with 2 entries:
3 => 4
1 => 3
Base.replace!
— Functionreplace!(A, old_new::Pair...; [count::Integer])
For each pair old=>new
in old_new
, replace all occurrences of old
in collection A
by new
. Equality is determined using isequal
. If count
is specified, then replace at most count
occurrences in total. See also replace
.
Examples
julia> replace!([1, 2, 1, 3], 1=>0, 2=>4, count=2)
4-element Array{Int64,1}:
0
4
1
3
julia> replace!(Set([1, 2, 3]), 1=>0)
Set{Int64} with 3 elements:
0
2
3
replace!(new::Function, A; [count::Integer])
Replace each element x
in collection A
by new(x)
. If count
is specified, then replace at most count
values in total (replacements being defined as new(x) !== x
).
Examples
julia> replace!(x -> isodd(x) ? 2x : x, [1, 2, 3, 4])
4-element Array{Int64,1}:
2
2
6
4
julia> replace!(Dict(1=>2, 3=>4)) do kv
first(kv) < 3 ? first(kv)=>3 : kv
end
Dict{Int64,Int64} with 2 entries:
3 => 4
1 => 3
julia> replace!(x->2x, Set([3, 6]))
Set{Int64} with 2 elements:
6
12
Indexable Collections
Base.getindex
— Functiongetindex(collection, key...)
Retrieve the value(s) stored at the given key or index within a collection. The syntax a[i,j,...]
is converted by the compiler to getindex(a, i, j, ...)
.
Examples
julia> A = Dict("a" => 1, "b" => 2)
Dict{String,Int64} with 2 entries:
"b" => 2
"a" => 1
julia> getindex(A, "a")
1
Base.setindex!
— Functionsetindex!(collection, value, key...)
Store the given value at the given key or index within a collection. The syntax a[i,j,...] = x
is converted by the compiler to (setindex!(a, x, i, j, ...); x)
.
Base.firstindex
— Functionfirstindex(collection) -> Integer
firstindex(collection, d) -> Integer
Return the first index of collection
. If d
is given, return the first index of collection
along dimension d
.
Examples
julia> firstindex([1,2,4])
1
julia> firstindex(rand(3,4,5), 2)
1
Base.lastindex
— Functionlastindex(collection) -> Integer
lastindex(collection, d) -> Integer
Return the last index of collection
. If d
is given, return the last index of collection
along dimension d
.
The syntaxes A[end]
and A[end, end]
lower to A[lastindex(A)]
and A[lastindex(A, 1), lastindex(A, 2)]
, respectively.
Examples
julia> lastindex([1,2,4])
3
julia> lastindex(rand(3,4,5), 2)
4
Fully implemented by:
Array
BitArray
AbstractArray
SubArray
Partially implemented by:
AbstractRange
UnitRange
Tuple
AbstractString
Dict
IdDict
WeakKeyDict
NamedTuple
Dictionaries
Dict
is the standard dictionary. Its implementation uses hash
as the hashing function for the key, and isequal
to determine equality. Define these two functions for custom types to override how they are stored in a hash table.
IdDict
is a special hash table where the keys are always object identities.
WeakKeyDict
is a hash table implementation where the keys are weak references to objects, and thus may be garbage collected even when referenced in a hash table. Like Dict
it uses hash
for hashing and isequal
for equality, unlike Dict
it does not convert keys on insertion.
Dict
s can be created by passing pair objects constructed with =>
to a Dict
constructor: Dict("A"=>1, "B"=>2)
. This call will attempt to infer type information from the keys and values (i.e. this example creates a Dict{String, Int64}
). To explicitly specify types use the syntax Dict{KeyType,ValueType}(...)
. For example, Dict{String,Int32}("A"=>1, "B"=>2)
.
Dictionaries may also be created with generators. For example, Dict(i => f(i) for i = 1:10)
.
Given a dictionary D
, the syntax D[x]
returns the value of key x
(if it exists) or throws an error, and D[x] = y
stores the key-value pair x => y
in D
(replacing any existing value for the key x
). Multiple arguments to D[...]
are converted to tuples; for example, the syntax D[x,y]
is equivalent to D[(x,y)]
, i.e. it refers to the value keyed by the tuple (x,y)
.
Base.AbstractDict
— TypeAbstractDict{K, V}
Supertype for dictionary-like types with keys of type K
and values of type V
. Dict
, IdDict
and other types are subtypes of this. An AbstractDict{K, V}
should be an iterator of Pair{K, V}
.
Base.Dict
— TypeDict([itr])
Dict{K,V}()
constructs a hash table with keys of type K
and values of type V
. Keys are compared with isequal
and hashed with hash
.
Given a single iterable argument, constructs a Dict
whose key-value pairs are taken from 2-tuples (key,value)
generated by the argument.
Examples
julia> Dict([("A", 1), ("B", 2)])
Dict{String,Int64} with 2 entries:
"B" => 2
"A" => 1
Alternatively, a sequence of pair arguments may be passed.
julia> Dict("A"=>1, "B"=>2)
Dict{String,Int64} with 2 entries:
"B" => 2
"A" => 1
Base.IdDict
— TypeIdDict([itr])
IdDict{K,V}()
constructs a hash table using object-id as hash and ===
as equality with keys of type K
and values of type V
.
See Dict
for further help.
Base.WeakKeyDict
— TypeWeakKeyDict([itr])
WeakKeyDict()
constructs a hash table where the keys are weak references to objects which may be garbage collected even when referenced in a hash table.
See Dict
for further help. Note, unlike Dict
, WeakKeyDict
does not convert keys on insertion.
Base.ImmutableDict
— TypeImmutableDict
ImmutableDict is a Dictionary implemented as an immutable linked list, which is optimal for small dictionaries that are constructed over many individual insertions Note that it is not possible to remove a value, although it can be partially overridden and hidden by inserting a new value with the same key
ImmutableDict(KV::Pair)
Create a new entry in the Immutable Dictionary for the key => value pair
- use
(key => value) in dict
to see if this particular combination is in the properties set - use
get(dict, key, default)
to retrieve the most recent value for a particular key
Base.haskey
— Functionhaskey(collection, key) -> Bool
Determine whether a collection has a mapping for a given key
.
Examples
julia> D = Dict('a'=>2, 'b'=>3)
Dict{Char,Int64} with 2 entries:
'a' => 2
'b' => 3
julia> haskey(D, 'a')
true
julia> haskey(D, 'c')
false
Base.get
— Methodget(collection, key, default)
Return the value stored for the given key, or the given default value if no mapping for the key is present.
Examples
julia> d = Dict("a"=>1, "b"=>2);
julia> get(d, "a", 3)
1
julia> get(d, "c", 3)
3
Base.get
— Functionget(collection, key, default)
Return the value stored for the given key, or the given default value if no mapping for the key is present.
Examples
julia> d = Dict("a"=>1, "b"=>2);
julia> get(d, "a", 3)
1
julia> get(d, "c", 3)
3
get(f::Function, collection, key)
Return the value stored for the given key, or if no mapping for the key is present, return f()
. Use get!
to also store the default value in the dictionary.
This is intended to be called using do
block syntax
get(dict, key) do
# default value calculated here
time()
end
Base.get!
— Methodget!(collection, key, default)
Return the value stored for the given key, or if no mapping for the key is present, store key => default
, and return default
.
Examples
julia> d = Dict("a"=>1, "b"=>2, "c"=>3);
julia> get!(d, "a", 5)
1
julia> get!(d, "d", 4)
4
julia> d
Dict{String,Int64} with 4 entries:
"c" => 3
"b" => 2
"a" => 1
"d" => 4
Base.get!
— Methodget!(f::Function, collection, key)
Return the value stored for the given key, or if no mapping for the key is present, store key => f()
, and return f()
.
This is intended to be called using do
block syntax:
get!(dict, key) do
# default value calculated here
time()
end
Base.getkey
— Functiongetkey(collection, key, default)
Return the key matching argument key
if one exists in collection
, otherwise return default
.
Examples
julia> D = Dict('a'=>2, 'b'=>3)
Dict{Char,Int64} with 2 entries:
'a' => 2
'b' => 3
julia> getkey(D, 'a', 1)
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
julia> getkey(D, 'd', 'a')
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
Base.delete!
— Functiondelete!(collection, key)
Delete the mapping for the given key in a collection, if any, and return the collection.
Examples
julia> d = Dict("a"=>1, "b"=>2)
Dict{String,Int64} with 2 entries:
"b" => 2
"a" => 1
julia> delete!(d, "b")
Dict{String,Int64} with 1 entry:
"a" => 1
julia> delete!(d, "b") # d is left unchanged
Dict{String,Int64} with 1 entry:
"a" => 1
Base.pop!
— Methodpop!(collection, key[, default])
Delete and return the mapping for key
if it exists in collection
, otherwise return default
, or throw an error if default
is not specified.
Examples
julia> d = Dict("a"=>1, "b"=>2, "c"=>3);
julia> pop!(d, "a")
1
julia> pop!(d, "d")
ERROR: KeyError: key "d" not found
Stacktrace:
[...]
julia> pop!(d, "e", 4)
4
Base.keys
— Functionkeys(iterator)
For an iterator or collection that has keys and values (e.g. arrays and dictionaries), return an iterator over the keys.
Base.values
— Functionvalues(iterator)
For an iterator or collection that has keys and values, return an iterator over the values. This function simply returns its argument by default, since the elements of a general iterator are normally considered its "values".
Examples
julia> d = Dict("a"=>1, "b"=>2);
julia> values(d)
Base.ValueIterator for a Dict{String,Int64} with 2 entries. Values:
2
1
julia> values([2])
1-element Array{Int64,1}:
2
values(a::AbstractDict)
Return an iterator over all values in a collection. collect(values(a))
returns an array of values. When the values are stored internally in a hash table, as is the case for Dict
, the order in which they are returned may vary. But keys(a)
and values(a)
both iterate a
and return the elements in the same order.
Examples
julia> D = Dict('a'=>2, 'b'=>3)
Dict{Char,Int64} with 2 entries:
'a' => 2
'b' => 3
julia> collect(values(D))
2-element Array{Int64,1}:
2
3
Base.pairs
— Functionpairs(IndexLinear(), A)
pairs(IndexCartesian(), A)
pairs(IndexStyle(A), A)
An iterator that accesses each element of the array A
, returning i => x
, where i
is the index for the element and x = A[i]
. Identical to pairs(A)
, except that the style of index can be selected. Also similar to enumerate(A)
, except i
will be a valid index for A
, while enumerate
always counts from 1 regardless of the indices of A
.
Specifying IndexLinear()
ensures that i
will be an integer; specifying IndexCartesian()
ensures that i
will be a CartesianIndex
; specifying IndexStyle(A)
chooses whichever has been defined as the native indexing style for array A
.
Mutation of the bounds of the underlying array will invalidate this iterator.
Examples
julia> A = ["a" "d"; "b" "e"; "c" "f"];
julia> for (index, value) in pairs(IndexStyle(A), A)
println("$index $value")
end
1 a
2 b
3 c
4 d
5 e
6 f
julia> S = view(A, 1:2, :);
julia> for (index, value) in pairs(IndexStyle(S), S)
println("$index $value")
end
CartesianIndex(1, 1) a
CartesianIndex(2, 1) b
CartesianIndex(1, 2) d
CartesianIndex(2, 2) e
See also: IndexStyle
, axes
.
pairs(collection)
Return an iterator over key => value
pairs for any collection that maps a set of keys to a set of values. This includes arrays, where the keys are the array indices.
Base.merge
— Functionmerge(d::AbstractDict, others::AbstractDict...)
Construct a merged collection from the given collections. If necessary, the types of the resulting collection will be promoted to accommodate the types of the merged collections. If the same key is present in another collection, the value for that key will be the value it has in the last collection listed.
Examples
julia> a = Dict("foo" => 0.0, "bar" => 42.0)
Dict{String,Float64} with 2 entries:
"bar" => 42.0
"foo" => 0.0
julia> b = Dict("baz" => 17, "bar" => 4711)
Dict{String,Int64} with 2 entries:
"bar" => 4711
"baz" => 17
julia> merge(a, b)
Dict{String,Float64} with 3 entries:
"bar" => 4711.0
"baz" => 17.0
"foo" => 0.0
julia> merge(b, a)
Dict{String,Float64} with 3 entries:
"bar" => 42.0
"baz" => 17.0
"foo" => 0.0
merge(combine, d::AbstractDict, others::AbstractDict...)
Construct a merged collection from the given collections. If necessary, the types of the resulting collection will be promoted to accommodate the types of the merged collections. Values with the same key will be combined using the combiner function.
Examples
julia> a = Dict("foo" => 0.0, "bar" => 42.0)
Dict{String,Float64} with 2 entries:
"bar" => 42.0
"foo" => 0.0
julia> b = Dict("baz" => 17, "bar" => 4711)
Dict{String,Int64} with 2 entries:
"bar" => 4711
"baz" => 17
julia> merge(+, a, b)
Dict{String,Float64} with 3 entries:
"bar" => 4753.0
"baz" => 17.0
"foo" => 0.0
merge(a::NamedTuple, bs::NamedTuple...)
Construct a new named tuple by merging two or more existing ones, in a left-associative manner. Merging proceeds left-to-right, between pairs of named tuples, and so the order of fields present in both the leftmost and rightmost named tuples take the same position as they are found in the leftmost named tuple. However, values are taken from matching fields in the rightmost named tuple that contains that field. Fields present in only the rightmost named tuple of a pair are appended at the end. A fallback is implemented for when only a single named tuple is supplied, with signature merge(a::NamedTuple)
.
Merging 3 or more NamedTuple
requires at least Julia 1.1.
Examples
julia> merge((a=1, b=2, c=3), (b=4, d=5))
(a = 1, b = 4, c = 3, d = 5)
julia> merge((a=1, b=2), (b=3, c=(d=1,)), (c=(d=2,),))
(a = 1, b = 3, c = (d = 2,))
merge(a::NamedTuple, iterable)
Interpret an iterable of key-value pairs as a named tuple, and perform a merge.
julia> merge((a=1, b=2, c=3), [:b=>4, :d=>5])
(a = 1, b = 4, c = 3, d = 5)
Base.merge!
— Methodmerge!(d::AbstractDict, others::AbstractDict...)
Update collection with pairs from the other collections. See also merge
.
Examples
julia> d1 = Dict(1 => 2, 3 => 4);
julia> d2 = Dict(1 => 4, 4 => 5);
julia> merge!(d1, d2);
julia> d1
Dict{Int64,Int64} with 3 entries:
4 => 5
3 => 4
1 => 4
Base.merge!
— Methodmerge!(combine, d::AbstractDict, others::AbstractDict...)
Update collection with pairs from the other collections. Values with the same key will be combined using the combiner function.
Examples
julia> d1 = Dict(1 => 2, 3 => 4);
julia> d2 = Dict(1 => 4, 4 => 5);
julia> merge!(+, d1, d2);
julia> d1
Dict{Int64,Int64} with 3 entries:
4 => 5
3 => 4
1 => 6
julia> merge!(-, d1, d1);
julia> d1
Dict{Int64,Int64} with 3 entries:
4 => 0
3 => 0
1 => 0
Base.sizehint!
— Functionsizehint!(s, n)
Suggest that collection s
reserve capacity for at least n
elements. This can improve performance.
Base.keytype
— Functionkeytype(T::Type{<:AbstractArray})
keytype(A::AbstractArray)
Return the key type of an array. This is equal to the eltype
of the result of keys(...)
, and is provided mainly for compatibility with the dictionary interface.
Examples
julia> keytype([1, 2, 3]) == Int
true
julia> keytype([1 2; 3 4])
CartesianIndex{2}
For arrays, this function requires at least Julia 1.2.
keytype(type)
Get the key type of an dictionary type. Behaves similarly to eltype
.
Examples
julia> keytype(Dict(Int32(1) => "foo"))
Int32
Base.valtype
— Functionvaltype(T::Type{<:AbstractArray})
valtype(A::AbstractArray)
Return the value type of an array. This is identical to eltype
and is provided mainly for compatibility with the dictionary interface.
Examples
julia> valtype(["one", "two", "three"])
String
For arrays, this function requires at least Julia 1.2.
valtype(type)
Get the value type of an dictionary type. Behaves similarly to eltype
.
Examples
julia> valtype(Dict(Int32(1) => "foo"))
String
Fully implemented by:
Partially implemented by:
Set-Like Collections
Base.AbstractSet
— TypeAbstractSet{T}
Supertype for set-like types whose elements are of type T
. Set
, BitSet
and other types are subtypes of this.
Base.Set
— TypeSet([itr])
Construct a Set
of the values generated by the given iterable object, or an empty set. Should be used instead of BitSet
for sparse integer sets, or for sets of arbitrary objects.
Base.BitSet
— TypeBitSet([itr])
Construct a sorted set of Int
s generated by the given iterable object, or an empty set. Implemented as a bit string, and therefore designed for dense integer sets. If the set will be sparse (for example, holding a few very large integers), use Set
instead.
Base.union
— Functionunion(s, itrs...)
∪(s, itrs...)
Construct the union of sets. Maintain order with arrays.
Examples
julia> union([1, 2], [3, 4])
4-element Array{Int64,1}:
1
2
3
4
julia> union([1, 2], [2, 4])
3-element Array{Int64,1}:
1
2
4
julia> union([4, 2], 1:2)
3-element Array{Int64,1}:
4
2
1
julia> union(Set([1, 2]), 2:3)
Set{Int64} with 3 elements:
2
3
1
Base.union!
— Functionunion!(s::Union{AbstractSet,AbstractVector}, itrs...)
Construct the union of passed in sets and overwrite s
with the result. Maintain order with arrays.
Examples
julia> a = Set([1, 3, 4, 5]);
julia> union!(a, 1:2:8);
julia> a
Set{Int64} with 5 elements:
7
4
3
5
1
Base.intersect
— Functionintersect(s, itrs...)
∩(s, itrs...)
Construct the intersection of sets. Maintain order with arrays.
Examples
julia> intersect([1, 2, 3], [3, 4, 5])
1-element Array{Int64,1}:
3
julia> intersect([1, 4, 4, 5, 6], [4, 6, 6, 7, 8])
2-element Array{Int64,1}:
4
6
julia> intersect(Set([1, 2]), BitSet([2, 3]))
Set{Int64} with 1 element:
2
Base.setdiff
— Functionsetdiff(s, itrs...)
Construct the set of elements in s
but not in any of the iterables in itrs
. Maintain order with arrays.
Examples
julia> setdiff([1,2,3], [3,4,5])
2-element Array{Int64,1}:
1
2
Base.setdiff!
— Functionsetdiff!(s, itrs...)
Remove from set s
(in-place) each element of each iterable from itrs
. Maintain order with arrays.
Examples
julia> a = Set([1, 3, 4, 5]);
julia> setdiff!(a, 1:2:6);
julia> a
Set{Int64} with 1 element:
4
Base.symdiff
— Functionsymdiff(s, itrs...)
Construct the symmetric difference of elements in the passed in sets. When s
is not an AbstractSet
, the order is maintained. Note that in this case the multiplicity of elements matters.
Examples
julia> symdiff([1,2,3], [3,4,5], [4,5,6])
3-element Array{Int64,1}:
1
2
6
julia> symdiff([1,2,1], [2, 1, 2])
2-element Array{Int64,1}:
1
2
julia> symdiff(unique([1,2,1]), unique([2, 1, 2]))
0-element Array{Int64,1}
Base.symdiff!
— Functionsymdiff!(s::Union{AbstractSet,AbstractVector}, itrs...)
Construct the symmetric difference of the passed in sets, and overwrite s
with the result. When s
is an array, the order is maintained. Note that in this case the multiplicity of elements matters.
Base.intersect!
— Functionintersect!(s::Union{AbstractSet,AbstractVector}, itrs...)
Intersect all passed in sets and overwrite s
with the result. Maintain order with arrays.
Base.issubset
— Functionissubset(a, b) -> Bool
⊆(a, b) -> Bool
⊇(b, a) -> Bool
Determine whether every element of a
is also in b
, using in
.
Examples
julia> issubset([1, 2], [1, 2, 3])
true
julia> [1, 2, 3] ⊆ [1, 2]
false
julia> [1, 2, 3] ⊇ [1, 2]
true
Base.:⊈
— Function⊈(a, b) -> Bool
⊉(b, a) -> Bool
Negation of ⊆
and ⊇
, i.e. checks that a
is not a subset of b
.
Examples
julia> (1, 2) ⊈ (2, 3)
true
julia> (1, 2) ⊈ (1, 2, 3)
false
Base.:⊊
— Function⊊(a, b) -> Bool
⊋(b, a) -> Bool
Determines if a
is a subset of, but not equal to, b
.
Examples
julia> (1, 2) ⊊ (1, 2, 3)
true
julia> (1, 2) ⊊ (1, 2)
false
Base.issetequal
— Functionissetequal(a, b) -> Bool
Determine whether a
and b
have the same elements. Equivalent to a ⊆ b && b ⊆ a
but more efficient when possible.
Examples
julia> issetequal([1, 2], [1, 2, 3])
false
julia> issetequal([1, 2], [2, 1])
true
Fully implemented by:
Partially implemented by:
Dequeues
Base.push!
— Functionpush!(collection, items...) -> collection
Insert one or more items
in collection
. If collection
is an ordered container, the items are inserted at the end (in the given order).
Examples
julia> push!([1, 2, 3], 4, 5, 6)
6-element Array{Int64,1}:
1
2
3
4
5
6
If collection
is ordered, use append!
to add all the elements of another collection to it. The result of the preceding example is equivalent to append!([1, 2, 3], [4, 5, 6])
. For AbstractSet
objects, union!
can be used instead.
Base.pop!
— Functionpop!(collection) -> item
Remove an item in collection
and return it. If collection
is an ordered container, the last item is returned.
Examples
julia> A=[1, 2, 3]
3-element Array{Int64,1}:
1
2
3
julia> pop!(A)
3
julia> A
2-element Array{Int64,1}:
1
2
julia> S = Set([1, 2])
Set{Int64} with 2 elements:
2
1
julia> pop!(S)
2
julia> S
Set{Int64} with 1 element:
1
julia> pop!(Dict(1=>2))
1 => 2
pop!(collection, key[, default])
Delete and return the mapping for key
if it exists in collection
, otherwise return default
, or throw an error if default
is not specified.
Examples
julia> d = Dict("a"=>1, "b"=>2, "c"=>3);
julia> pop!(d, "a")
1
julia> pop!(d, "d")
ERROR: KeyError: key "d" not found
Stacktrace:
[...]
julia> pop!(d, "e", 4)
4
Base.pushfirst!
— Functionpushfirst!(collection, items...) -> collection
Insert one or more items
at the beginning of collection
.
Examples
julia> pushfirst!([1, 2, 3, 4], 5, 6)
6-element Array{Int64,1}:
5
6
1
2
3
4
Base.popfirst!
— Functionpopfirst!(collection) -> item
Remove the first item
from collection
.
Examples
julia> A = [1, 2, 3, 4, 5, 6]
6-element Array{Int64,1}:
1
2
3
4
5
6
julia> popfirst!(A)
1
julia> A
5-element Array{Int64,1}:
2
3
4
5
6
Base.insert!
— Functioninsert!(a::Vector, index::Integer, item)
Insert an item
into a
at the given index
. index
is the index of item
in the resulting a
.
Examples
julia> insert!([6, 5, 4, 2, 1], 4, 3)
6-element Array{Int64,1}:
6
5
4
3
2
1
Base.deleteat!
— Functiondeleteat!(a::Vector, i::Integer)
Remove the item at the given i
and return the modified a
. Subsequent items are shifted to fill the resulting gap.
Examples
julia> deleteat!([6, 5, 4, 3, 2, 1], 2)
5-element Array{Int64,1}:
6
4
3
2
1
deleteat!(a::Vector, inds)
Remove the items at the indices given by inds
, and return the modified a
. Subsequent items are shifted to fill the resulting gap.
inds
can be either an iterator or a collection of sorted and unique integer indices, or a boolean vector of the same length as a
with true
indicating entries to delete.
Examples
julia> deleteat!([6, 5, 4, 3, 2, 1], 1:2:5)
3-element Array{Int64,1}:
5
3
1
julia> deleteat!([6, 5, 4, 3, 2, 1], [true, false, true, false, true, false])
3-element Array{Int64,1}:
5
3
1
julia> deleteat!([6, 5, 4, 3, 2, 1], (2, 2))
ERROR: ArgumentError: indices must be unique and sorted
Stacktrace:
[...]
Base.splice!
— Functionsplice!(a::Vector, index::Integer, [replacement]) -> item
Remove the item at the given index, and return the removed item. Subsequent items are shifted left to fill the resulting gap. If specified, replacement values from an ordered collection will be spliced in place of the removed item.
Examples
julia> A = [6, 5, 4, 3, 2, 1]; splice!(A, 5)
2
julia> A
5-element Array{Int64,1}:
6
5
4
3
1
julia> splice!(A, 5, -1)
1
julia> A
5-element Array{Int64,1}:
6
5
4
3
-1
julia> splice!(A, 1, [-1, -2, -3])
6
julia> A
7-element Array{Int64,1}:
-1
-2
-3
5
4
3
-1
To insert replacement
before an index n
without removing any items, use splice!(collection, n:n-1, replacement)
.
splice!(a::Vector, range, [replacement]) -> items
Remove items in the specified index range, and return a collection containing the removed items. Subsequent items are shifted left to fill the resulting gap. If specified, replacement values from an ordered collection will be spliced in place of the removed items.
To insert replacement
before an index n
without removing any items, use splice!(collection, n:n-1, replacement)
.
Examples
julia> A = [-1, -2, -3, 5, 4, 3, -1]; splice!(A, 4:3, 2)
0-element Array{Int64,1}
julia> A
8-element Array{Int64,1}:
-1
-2
-3
2
5
4
3
-1
Base.resize!
— Functionresize!(a::Vector, n::Integer) -> Vector
Resize a
to contain n
elements. If n
is smaller than the current collection length, the first n
elements will be retained. If n
is larger, the new elements are not guaranteed to be initialized.
Examples
julia> resize!([6, 5, 4, 3, 2, 1], 3)
3-element Array{Int64,1}:
6
5
4
julia> a = resize!([6, 5, 4, 3, 2, 1], 8);
julia> length(a)
8
julia> a[1:6]
6-element Array{Int64,1}:
6
5
4
3
2
1
Base.append!
— Functionappend!(collection, collection2) -> collection.
For an ordered container collection
, add the elements of collection2
to the end of it.
Examples
julia> append!([1],[2,3])
3-element Array{Int64,1}:
1
2
3
julia> append!([1, 2, 3], [4, 5, 6])
6-element Array{Int64,1}:
1
2
3
4
5
6
Use push!
to add individual items to collection
which are not already themselves in another collection. The result of the preceding example is equivalent to push!([1, 2, 3], 4, 5, 6)
.
Base.prepend!
— Functionprepend!(a::Vector, items) -> collection
Insert the elements of items
to the beginning of a
.
Examples
julia> prepend!([3],[1,2])
3-element Array{Int64,1}:
1
2
3
Fully implemented by:
Utility Collections
Base.Pair
— TypePair(x, y)
x => y
Construct a Pair
object with type Pair{typeof(x), typeof(y)}
. The elements are stored in the fields first
and second
. They can also be accessed via iteration (but a Pair
is treated as a single "scalar" for broadcasting operations).
See also: Dict
Examples
julia> p = "foo" => 7
"foo" => 7
julia> typeof(p)
Pair{String,Int64}
julia> p.first
"foo"
julia> for x in p
println(x)
end
foo
7
Base.Iterators.Pairs
— TypeIterators.Pairs(values, keys) <: AbstractDict{eltype(keys), eltype(values)}
Transforms an indexable container into an Dictionary-view of the same data. Modifying the key-space of the underlying data may invalidate this object.