Mathematics
Mathematical Operators
Base.:+ — Function
+(x, y...)Addition operator.
Infix x+y+z+... calls this function with all arguments, i.e. +(x, y, z, ...),
which by default then calls (x+y) + z + ... starting from the left.
Note that overflow is possible for most integer types, including the
default Int, when adding large numbers.
Examples
julia> 1 + 20 + 4
25
julia> +(1, 20, 4)
25
julia> [1,2] + [3,4]
2-element Vector{Int64}:
4
6
julia> typemax(Int) + 1 < 0
truedt::Date + t::Time -> DateTimeThe addition of a Date with a Time produces a DateTime. The hour, minute, second, and millisecond parts of
the Time are used along with the year, month, and day of the Date to create the new DateTime.
Non-zero microseconds or nanoseconds in the Time type will result in an InexactError being thrown.
Base.:* — Method
*(x, y...)Multiplication operator.
Infix x*y*z*... calls this function with all arguments, i.e. *(x, y, z, ...),
which by default then calls (x*y) * z * ... starting from the left.
Juxtaposition such as 2pi also calls *(2, pi). Note that this operation
has higher precedence than a literal *. Note also that juxtaposition "0x..."
(integer zero times a variable whose name starts with x) is forbidden as
it clashes with unsigned integer literals: 0x01 isa UInt8.
Note that overflow is possible for most integer types, including the default Int,
when multiplying large numbers.
Examples
julia> 2 * 7 * 8
112
julia> *(2, 7, 8)
112
julia> [2 0; 0 3] * [1, 10] # matrix * vector
2-element Vector{Int64}:
2
30
julia> 1/2pi, 1/2*pi # juxtaposition has higher precedence
(0.15915494309189535, 1.5707963267948966)
julia> x = [1, 2]; x'x # adjoint vector * vector
5Base.:/ — Function
/(x, y)Right division operator: multiplication of x by the inverse of y on the right.
Gives floating-point results for integer arguments.
See ÷ for integer division, or // for Rational results.
Examples
julia> 1/2
0.5
julia> 4/2
2.0
julia> 4.5/2
2.25A / BMatrix right-division: A / B is equivalent to (B' \ A')' where \ is the left-division operator.
For square matrices, the result X is such that A == X*B.
See also: rdiv!.
Examples
julia> A = Float64[1 4 5; 3 9 2]; B = Float64[1 4 2; 3 4 2; 8 7 1];
julia> X = A / B
2×3 Matrix{Float64}:
-0.65 3.75 -1.2
3.25 -2.75 1.0
julia> isapprox(A, X*B)
true
julia> isapprox(X, A*pinv(B))
trueBase.:\ — Method
\(x, y)Left division operator: multiplication of y by the inverse of x on the left. Gives
floating-point results for integer arguments.
Examples
julia> 3 \ 6
2.0
julia> inv(3) * 6
2.0
julia> A = [4 3; 2 1]; x = [5, 6];
julia> A \ x
2-element Vector{Float64}:
6.5
-7.0
julia> inv(A) * x
2-element Vector{Float64}:
6.5
-7.0Base.:^ — Method
^(x, y)Exponentiation operator.
If x and y are integers, the result may overflow.
To enter numbers in scientific notation, use Float64 literals
such as 1.2e3 rather than 1.2 * 10^3.
If y is an Int literal (e.g. 2 in x^2 or -3 in x^-3), the Julia code
x^y is transformed by the compiler to Base.literal_pow(^, x, Val(y)), to
enable compile-time specialization on the value of the exponent.
(As a default fallback we have Base.literal_pow(^, x, Val(y)) = ^(x,y),
where usually ^ == Base.^ unless ^ has been defined in the calling
namespace.) If y is a negative integer literal, then Base.literal_pow
transforms the operation to inv(x)^-y by default, where -y is positive.
Examples
julia> 3^5
243
julia> 3^-1 # uses Base.literal_pow
0.3333333333333333
julia> p = -1;
julia> 3^p
ERROR: DomainError with -1:
Cannot raise an integer x to a negative power -1.
[...]
julia> 3.0^p
0.3333333333333333
julia> 10^19 > 0 # integer overflow
false
julia> big(10)^19 == 1e19
trueBase.muladd — Function
muladd(x, y, z)Combined multiply-add: computes x*y+z, but allowing the add and multiply to be merged
with each other or with surrounding operations for performance.
For example, this may be implemented as an fma if the hardware supports it
efficiently.
The result can be different on different machines and can also be different on the same machine
due to constant propagation or other optimizations.
See fma.
Examples
julia> muladd(3, 2, 1)
7
julia> 3 * 2 + 1
7muladd(A, y, z)Combined multiply-add, A*y .+ z, for matrix-matrix or matrix-vector multiplication.
The result is always the same size as A*y, but z may be smaller, or a scalar.
Examples
julia> A=[1.0 2.0; 3.0 4.0]; B=[1.0 1.0; 1.0 1.0]; z=[0, 100];
julia> muladd(A, B, z)
2×2 Matrix{Float64}:
3.0 3.0
107.0 107.0Base.inv — Method
inv(x)Return the multiplicative inverse of x, such that x*inv(x) or inv(x)*x
yields one(x) (the multiplicative identity) up to roundoff errors.
If x is a number, this is essentially the same as one(x)/x, but for
some types inv(x) may be slightly more efficient.
Examples
julia> inv(2)
0.5
julia> inv(1 + 2im)
0.2 - 0.4im
julia> inv(1 + 2im) * (1 + 2im)
1.0 + 0.0im
julia> inv(2//3)
3//2Base.div — Function
div(x, y)
÷(x, y)The quotient from Euclidean (integer) division. Generally equivalent to a mathematical operation x/y without a fractional part.
See also: cld, fld, rem, divrem.
Examples
julia> 9 ÷ 4
2
julia> -5 ÷ 3
-1
julia> 5.0 ÷ 2
2.0
julia> div.(-5:5, 3)'
1×11 adjoint(::Vector{Int64}) with eltype Int64:
-1 -1 -1 0 0 0 0 0 1 1 1Base.div — Method
div(x, y, r::RoundingMode=RoundToZero)The quotient from Euclidean (integer) division. Computes x / y, rounded to
an integer according to the rounding mode r. In other words, the quantity
round(x / y, r)without any intermediate rounding.
See also fld and cld, which are special cases of this function.
Examples:
julia> div(4, 3, RoundToZero) # Matches div(4, 3)
1
julia> div(4, 3, RoundDown) # Matches fld(4, 3)
1
julia> div(4, 3, RoundUp) # Matches cld(4, 3)
2
julia> div(5, 2, RoundNearest)
2
julia> div(5, 2, RoundNearestTiesAway)
3
julia> div(-5, 2, RoundNearest)
-2
julia> div(-5, 2, RoundNearestTiesAway)
-3
julia> div(-5, 2, RoundNearestTiesUp)
-2
julia> div(4, 3, RoundFromZero)
2
julia> div(-4, 3, RoundFromZero)
-2Because div(x, y) implements strictly correct truncated rounding based on the true
value of floating-point numbers, unintuitive situations can arise. For example:
julia> div(6.0, 0.1)
59.0
julia> 6.0 / 0.1
60.0
julia> 6.0 / big(0.1)
59.99999999999999666933092612453056361837965690217069245739573412231113406246995What is happening here is that the true value of the floating-point number written
as 0.1 is slightly larger than the numerical value 1/10 while 6.0 represents
the number 6 precisely. Therefore the true value of 6.0 / 0.1 is slightly less
than 60. When doing division, this is rounded to precisely 60.0, but
div(6.0, 0.1, RoundToZero) always truncates the true value, so the result is 59.0.
Base.fld — Function
fld(x, y)Largest integer less than or equal to x / y. Equivalent to div(x, y, RoundDown).
Examples
julia> fld(7.3, 5.5)
1.0
julia> fld.(-5:5, 3)'
1×11 adjoint(::Vector{Int64}) with eltype Int64:
-2 -2 -1 -1 -1 0 0 0 1 1 1Because fld(x, y) implements strictly correct floored rounding based on the true
value of floating-point numbers, unintuitive situations can arise. For example:
julia> fld(6.0, 0.1)
59.0
julia> 6.0 / 0.1
60.0
julia> 6.0 / big(0.1)
59.99999999999999666933092612453056361837965690217069245739573412231113406246995What is happening here is that the true value of the floating-point number written
as 0.1 is slightly larger than the numerical value 1/10 while 6.0 represents
the number 6 precisely. Therefore the true value of 6.0 / 0.1 is slightly less
than 60. When doing division, this is rounded to precisely 60.0, but
fld(6.0, 0.1) always takes the floor of the true value, so the result is 59.0.
Base.mod — Function
rem(x::Integer, T::Type{<:Integer})::T
mod(x::Integer, T::Type{<:Integer})::T
%(x::Integer, T::Type{<:Integer})::TFind y::T such that x ≡ y (mod n), where n is the number of integers representable
in T, and y is an integer in [typemin(T),typemax(T)].
If T can represent any integer (e.g. T == BigInt), then this operation corresponds to
a conversion to T.
Examples
julia> x = 129 % Int8
-127
julia> typeof(x)
Int8
julia> x = 129 % BigInt
129
julia> typeof(x)
BigIntmod(x, y)
rem(x, y, RoundDown)The reduction of x modulo y, or equivalently, the remainder of x after floored
division by y, i.e. x - y*fld(x,y) if computed without intermediate rounding.
The result will have the same sign as y if isfinite(y), and magnitude less than abs(y) (with some
exceptions, see note below).
When used with floating point values, the exact result may not be representable by the
type, and so rounding error may occur. In particular, if the exact result is very
close to y, then it may be rounded to y.
See also: rem, div, fld, mod1, invmod.
julia> mod(8, 3)
2
julia> mod(9, 3)
0
julia> mod(8.9, 3)
2.9000000000000004
julia> mod(eps(), 3)
2.220446049250313e-16
julia> mod(-eps(), 3)
3.0
julia> mod.(-5:5, 3)'
1×11 adjoint(::Vector{Int64}) with eltype Int64:
1 2 0 1 2 0 1 2 0 1 2mod(x::Integer, r::AbstractUnitRange)Find y in the range r such that x ≡ y (mod n), where n = length(r),
i.e. y = mod(x - first(r), n) + first(r).
See also mod1.
Examples
julia> mod(0, Base.OneTo(3)) # mod1(0, 3)
3
julia> mod(3, 0:2) # mod(3, 3)
0Base.rem — Function
rem(x, y)
%(x, y)Remainder from Euclidean division, returning a value of the same sign as x, and smaller in
magnitude than y. This value is always exact.
See also: div, mod, mod1, divrem.
Examples
julia> x = 15; y = 4;
julia> x % y
3
julia> x == div(x, y) * y + rem(x, y)
true
julia> rem.(-5:5, 3)'
1×11 adjoint(::Vector{Int64}) with eltype Int64:
-2 -1 0 -2 -1 0 1 2 0 1 2Base.rem — Method
rem(x, y, r::RoundingMode=RoundToZero)Compute the remainder of x after integer division by y, with the quotient rounded
according to the rounding mode r. In other words, the quantity
x - y * round(x / y, r)without any intermediate rounding.
if
r == RoundNearest, then the result is exact, and in the interval $[-|y| / 2, |y| / 2]$. See alsoRoundNearest.if
r == RoundToZero(default), then the result is exact, and in the interval $[0, |y|)$ ifxis positive, or $(-|y|, 0]$ otherwise. See alsoRoundToZero.if
r == RoundDown, then the result is in the interval $[0, y)$ ifyis positive, or $(y, 0]$ otherwise. The result may not be exact ifxandyhave different signs, andabs(x) < abs(y). See alsoRoundDown.if
r == RoundUp, then the result is in the interval $(-y, 0]$ ifyis positive, or $[0, -y)$ otherwise. The result may not be exact ifxandyhave the same sign, andabs(x) < abs(y). See alsoRoundUp.if
r == RoundFromZero, then the result is in the interval $(-y, 0]$ ifyis positive, or $[0, -y)$ otherwise. The result may not be exact ifxandyhave the same sign, andabs(x) < abs(y). See alsoRoundFromZero.
Examples:
julia> x = 9; y = 4;
julia> x % y # same as rem(x, y)
1
julia> x ÷ y # same as div(x, y)
2
julia> x == div(x, y) * y + rem(x, y)
trueBase.Math.rem2pi — Function
rem2pi(x, r::RoundingMode)Compute the remainder of x after integer division by 2π, with the quotient rounded
according to the rounding mode r. In other words, the quantity
x - 2π*round(x/(2π),r)without any intermediate rounding. This internally uses a high precision approximation of
2π, and so will give a more accurate result than rem(x,2π,r)
if
r == RoundNearest, then the result is in the interval $[-π, π]$. This will generally be the most accurate result. See alsoRoundNearest.if
r == RoundToZero, then the result is in the interval $[0, 2π]$ ifxis positive,. or $[-2π, 0]$ otherwise. See alsoRoundToZero.if
r == RoundDown, then the result is in the interval $[0, 2π]$. See alsoRoundDown.if
r == RoundUp, then the result is in the interval $[-2π, 0]$. See alsoRoundUp.
Examples
julia> rem2pi(7pi/4, RoundNearest)
-0.7853981633974485
julia> rem2pi(7pi/4, RoundDown)
5.497787143782138Base.Math.mod2pi — Function
mod2pi(x)Modulus after division by 2π, returning in the range $[0,2π)$.
This function computes a floating point representation of the modulus after division by
numerically exact 2π, and is therefore not exactly the same as mod(x,2π), which would
compute the modulus of x relative to division by the floating-point number 2π.
Depending on the format of the input value, the closest representable value to 2π may
be less than 2π. For example, the expression mod2pi(2π) will not return 0, because
the intermediate value of 2*π is a Float64 and 2*Float64(π) < 2*big(π). See
rem2pi for more refined control of this behavior.
Examples
julia> mod2pi(9*pi/4)
0.7853981633974481Base.divrem — Function
divrem(x, y, r::RoundingMode=RoundToZero)The quotient and remainder from Euclidean division.
Equivalent to (div(x, y, r), rem(x, y, r)). Equivalently, with the default
value of r, this call is equivalent to (x ÷ y, x % y).
Examples
julia> divrem(3, 7)
(0, 3)
julia> divrem(7, 3)
(2, 1)Base.fldmod — Function
fldmod(x, y)The floored quotient and modulus after division. A convenience wrapper for
divrem(x, y, RoundDown). Equivalent to (fld(x, y), mod(x, y)).
Base.mod1 — Function
mod1(x, y)Modulus after flooring division, returning a value r such that mod(r, y) == mod(x, y)
in the range $(0, y]$ for positive y and in the range $[y,0)$ for negative y.
With integer arguments and positive y, this is equal to mod(x, 1:y), and hence natural
for 1-based indexing. By comparison, mod(x, y) == mod(x, 0:y-1) is natural for computations with
offsets or strides.
Examples
julia> mod1(4, 2)
2
julia> mod1.(-5:5, 3)'
1×11 adjoint(::Vector{Int64}) with eltype Int64:
1 2 3 1 2 3 1 2 3 1 2
julia> mod1.([-0.1, 0, 0.1, 1, 2, 2.9, 3, 3.1]', 3)
1×8 Matrix{Float64}:
2.9 3.0 0.1 1.0 2.0 2.9 3.0 0.1Base.fldmod1 — Function
Base.:// — Function
//(num, den)Divide two integers or rational numbers, giving a Rational result.
More generally, // can be used for exact rational division of other numeric types
with integer or rational components, such as complex numbers with integer components.
Note that floating-point (AbstractFloat) arguments are not permitted by //
(even if the values are rational).
The arguments must be subtypes of Integer, Rational, or composites thereof.
Examples
julia> 3 // 5
3//5
julia> (3 // 5) // (2 // 1)
3//10
julia> (1+2im) // (3+4im)
11//25 + 2//25*im
julia> 1.0 // 2
ERROR: MethodError: no method matching //(::Float64, ::Int64)
[...]Base.rationalize — Function
rationalize([T<:Integer=Int,] x; tol::Real=eps(x))Approximate floating point number x as a Rational number with components
of the given integer type. The result will differ from x by no more than tol.
Examples
julia> rationalize(5.6)
28//5
julia> a = rationalize(BigInt, 10.3)
103//10
julia> typeof(numerator(a))
BigIntBase.numerator — Function
numerator(x)Numerator of the rational representation of x.
Examples
julia> numerator(2//3)
2
julia> numerator(4)
4Base.denominator — Function
denominator(x)Denominator of the rational representation of x.
Examples
julia> denominator(2//3)
3
julia> denominator(4)
1Base.:<< — Function
<<(B::BitVector, n)::BitVectorLeft bit shift operator, B << n. For n >= 0, the result is B
with elements shifted n positions backwards, filling with false
values. If n < 0, elements are shifted forwards. Equivalent to
B >> -n.
Examples
julia> B = BitVector([true, false, true, false, false])
5-element BitVector:
1
0
1
0
0
julia> B << 1
5-element BitVector:
0
1
0
0
0
julia> B << -1
5-element BitVector:
0
1
0
1
0<<(x, n)Left bit shift operator, x << n. For n >= 0, the result is x shifted left
by n bits, filling with 0s. This is equivalent to x * 2^n. For n < 0,
this is equivalent to x >> -n.
Examples
julia> Int8(3) << 2
12
julia> bitstring(Int8(3))
"00000011"
julia> bitstring(Int8(12))
"00001100"Base.:>> — Function
>>(B::BitVector, n)::BitVectorRight bit shift operator, B >> n. For n >= 0, the result is B
with elements shifted n positions forward, filling with false
values. If n < 0, elements are shifted backwards. Equivalent to
B << -n.
Examples
julia> B = BitVector([true, false, true, false, false])
5-element BitVector:
1
0
1
0
0
julia> B >> 1
5-element BitVector:
0
1
0
1
0
julia> B >> -1
5-element BitVector:
0
1
0
0
0>>(x, n)Right bit shift operator, x >> n. For n >= 0, the result is x shifted
right by n bits, filling with 0s if x >= 0, 1s if x < 0, preserving
the sign of x. This is equivalent to fld(x, 2^n). For n < 0, this is
equivalent to x << -n.
Examples
julia> Int8(13) >> 2
3
julia> bitstring(Int8(13))
"00001101"
julia> bitstring(Int8(3))
"00000011"
julia> Int8(-14) >> 2
-4
julia> bitstring(Int8(-14))
"11110010"
julia> bitstring(Int8(-4))
"11111100"Base.:>>> — Function
>>>(B::BitVector, n)::BitVectorUnsigned right bitshift operator, B >>> n. Equivalent to B >> n. See >> for
details and examples.
>>>(x, n)Unsigned right bit shift operator, x >>> n. For n >= 0, the result is x
shifted right by n bits, filling with 0s. For n < 0, this is equivalent
to x << -n.
For Unsigned integer types, this is equivalent to >>. For
Signed integer types, this is equivalent to signed(unsigned(x) >> n).
Examples
julia> Int8(-14) >>> 2
60
julia> bitstring(Int8(-14))
"11110010"
julia> bitstring(Int8(60))
"00111100"BigInts are treated as if having infinite size, so no filling is required and this
is equivalent to >>.
Base.bitrotate — Function
bitrotate(x::Base.BitInteger, k::Integer)bitrotate(x, k) implements bitwise rotation.
It returns the value of x with its bits rotated left k times.
A negative value of k will rotate to the right instead.
See also: <<, circshift, BitArray.
julia> bitrotate(UInt8(114), 2)
0xc9
julia> bitstring(bitrotate(0b01110010, 2))
"11001001"
julia> bitstring(bitrotate(0b01110010, -2))
"10011100"
julia> bitstring(bitrotate(0b01110010, 8))
"01110010"Base.:: — Method
(:)(start, [step], stop)Range operator. a:b constructs a range from a to b with a step size
equal to +1, which produces:
a
UnitRangewhenaandbare integers, ora
StepRangewhenaandbare characters, ora
StepRangeLenwhenaand/orbare floating-point.
a:s:b is similar but uses a step size of s (a StepRange or
StepRangeLen). See also range for more control.
To create a descending range, use reverse(a:b) or a negative step size, e.g. b:-1:a.
Otherwise, when b < a, an empty range will be constructed and normalized to a:a-1.
The operator : is also used in indexing to select whole dimensions, e.g. in A[:, 1].
: is also used to quote code, e.g. :(x + y) isa Expr and :x isa Symbol.
Since :2 isa Int, it does not create a range in indexing: v[:2] == v[2] != v[begin:2].
Base.:: — Method
(:)(start::CartesianIndex, [step::CartesianIndex], stop::CartesianIndex)Construct CartesianIndices from two CartesianIndex and an optional step.
Examples
julia> I = CartesianIndex(2,1);
julia> J = CartesianIndex(3,3);
julia> I:J
CartesianIndices((2:3, 1:3))
julia> I:CartesianIndex(1, 2):J
CartesianIndices((2:1:3, 1:2:3))Base.range — Function
range(start, stop, length)
range(start, stop; length, step)
range(start; length, stop, step)
range(;start, length, stop, step)Construct a specialized array with evenly spaced elements and optimized storage (an AbstractRange) from the arguments.
Mathematically a range is uniquely determined by any three of start, step, stop and length.
Valid invocations of range are:
Call
rangewith any three ofstart,step,stop,length.Call
rangewith two ofstart,stop,length. In this casestepwill be assumed to be positive one. If both arguments are Integers, aUnitRangewill be returned.Call
rangewith one ofstoporlength.startandstepwill be assumed to be positive one.
To construct a descending range, specify a negative step size, e.g. range(5, 1; step = -1) => [5,4,3,2,1]. Otherwise,
a stop value less than the start value, with the default step of +1, constructs an empty range. Empty ranges
are normalized such that the stop is one less than the start, e.g. range(5, 1) == 5:4.
See Extended Help for additional details on the returned type.
See also logrange for logarithmically spaced points.
Examples
julia> range(1, length=100)
1:100
julia> range(1, stop=100)
1:100
julia> range(1, step=5, length=100)
1:5:496
julia> range(1, step=5, stop=100)
1:5:96
julia> range(1, 10, length=101)
1.0:0.09:10.0
julia> range(1, 100, step=5)
1:5:96
julia> range(stop=10, length=5)
6:10
julia> range(stop=10, step=1, length=5)
6:1:10
julia> range(start=1, step=1, stop=10)
1:1:10
julia> range(; length = 10)
Base.OneTo(10)
julia> range(; stop = 6)
Base.OneTo(6)
julia> range(; stop = 6.5)
1.0:1.0:6.0If length is not specified and stop - start is not an integer multiple of step, a range that ends before stop will be produced.
julia> range(1, 3.5, step=2)
1.0:2.0:3.0Special care is taken to ensure intermediate values are computed rationally.
To avoid this induced overhead, see the LinRange constructor.
The versions without keyword arguments and start as a keyword argument
require at least Julia 1.7.
The versions with stop as a sole keyword argument,
or length as a sole keyword argument require at least Julia 1.8.
Extended Help
range will produce a Base.OneTo when the arguments are Integers and
Only
lengthis providedOnly
stopis provided
range will produce a UnitRange when the arguments are Integers and
Only
startandstopare providedOnly
lengthandstopare provided
A UnitRange is not produced if step is provided even if specified as one.
Base.OneTo — Type
Base.OneTo(n)Define an AbstractUnitRange that behaves like 1:n, with the added
distinction that the lower limit is guaranteed (by the type system) to
be 1.
Base.StepRangeLen — Type
StepRangeLen( ref::R, step::S, len, [offset=1]) where { R,S}
StepRangeLen{T,R,S}( ref::R, step::S, len, [offset=1]) where {T,R,S}
StepRangeLen{T,R,S,L}(ref::R, step::S, len, [offset=1]) where {T,R,S,L}A range r where r[i] produces values of type T (in the first
form, T is deduced automatically), parameterized by a reference
value, a step, and the length. By default ref is the starting
value r[1], but alternatively you can supply it as the value of
r[offset] for some other index 1 <= offset <= len. The syntax a:b
or a:b:c, where any of a, b, or c are floating-point numbers, creates a
StepRangeLen.
Base.logrange — Function
logrange(start, stop, length)
logrange(start, stop; length)Construct a specialized array whose elements are spaced logarithmically between the given endpoints. That is, the ratio of successive elements is a constant, calculated from the length.
This is similar to geomspace in Python. Unlike PowerRange in Mathematica,
you specify the number of elements not the ratio.
Unlike logspace in Python and Matlab, the start and stop arguments are
always the first and last elements of the result, not powers applied to some base.
Examples
julia> logrange(10, 4000, length=3)
3-element Base.LogRange{Float64, Base.TwicePrecision{Float64}}:
10.0, 200.0, 4000.0
julia> ans[2] ≈ sqrt(10 * 4000) # middle element is the geometric mean
true
julia> range(10, 40, length=3)[2] ≈ (10 + 40)/2 # arithmetic mean
true
julia> logrange(1f0, 32f0, 11)
11-element Base.LogRange{Float32, Float64}:
1.0, 1.41421, 2.0, 2.82843, 4.0, 5.65685, 8.0, 11.3137, 16.0, 22.6274, 32.0
julia> logrange(1, 1000, length=4) ≈ 10 .^ (0:3)
trueSee the LogRange type for further details.
See also range for linearly spaced points.
Base.LogRange — Type
LogRange{T}(start, stop, len) <: AbstractVector{T}A range whose elements are spaced logarithmically between start and stop,
with spacing controlled by len. Returned by logrange.
Like LinRange, the first and last elements will be exactly those
provided, but intermediate values may have small floating-point errors.
These are calculated using the logs of the endpoints, which are
stored on construction, often in higher precision than T.
Examples
julia> logrange(1, 4, length=5)
5-element Base.LogRange{Float64, Base.TwicePrecision{Float64}}:
1.0, 1.41421, 2.0, 2.82843, 4.0
julia> Base.LogRange{Float16}(1, 4, 5)
5-element Base.LogRange{Float16, Float64}:
1.0, 1.414, 2.0, 2.828, 4.0
julia> logrange(1e-310, 1e-300, 11)[1:2:end]
6-element Vector{Float64}:
1.0e-310
9.999999999999974e-309
9.999999999999981e-307
9.999999999999988e-305
9.999999999999994e-303
1.0e-300
julia> prevfloat(1e-308, 5) == ans[2]
trueNote that integer eltype T is not allowed.
Use for instance round.(Int, xs), or explicit powers of some integer base:
julia> xs = logrange(1, 512, 4)
4-element Base.LogRange{Float64, Base.TwicePrecision{Float64}}:
1.0, 8.0, 64.0, 512.0
julia> 2 .^ (0:3:9) |> println
[1, 8, 64, 512]Base.:== — Function
==(x, y)Generic equality operator. Falls back to ===.
Should be implemented for all types with a notion of equality, based on the abstract value
that an instance represents. For example, all numeric types are compared by numeric value,
ignoring type. Strings are compared as sequences of characters, ignoring encoding.
Collections of the same type generally compare their key sets, and if those are ==, then compare the values
for each of those keys, returning true if all such pairs are ==.
Other properties are typically not taken into account (such as the exact type).
This operator follows IEEE semantics for floating-point numbers: 0.0 == -0.0 and
NaN != NaN.
The result is of type Bool, except when one of the operands is missing,
in which case missing is returned
(three-valued logic).
Collections generally implement three-valued logic akin to all, returning
missing if any operands contain missing values and all other pairs are equal.
Use isequal or === to always get a Bool result.
Implementation
New numeric types should implement this function for two arguments of the new type, and handle comparison to other types via promotion rules where possible.
Equality and hashing are intimately related; two values that are considered isequal must
have the same hash and by default isequal falls back to ==. If a type customizes the behavior of == and/or isequal,
then hash must be similarly implemented to ensure isequal and hash agree. Sets, Dicts, and many other internal
implementations assume that this invariant holds.
If some type defines ==, isequal, and isless then it should
also implement < to ensure consistency of comparisons.
Base.:!= — Function
!=(x)Create a function that compares its argument to x using !=, i.e.
a function equivalent to y -> y != x.
The returned function is of type Base.Fix2{typeof(!=)}, which can be
used to implement specialized methods.
!=(x, y)
≠(x,y)Not-equals comparison operator. Always gives the opposite answer as ==.
Implementation
New types should generally not implement this, and rely on the fallback definition
!=(x,y) = !(x==y) instead.
Examples
julia> 3 != 2
true
julia> "foo" ≠ "foo"
falseBase.:< — Function
<(x)Create a function that compares its argument to x using <, i.e.
a function equivalent to y -> y < x.
The returned function is of type Base.Fix2{typeof(<)}, which can be
used to implement specialized methods.
<(x, y)Less-than comparison operator. Falls back to isless.
Because of the behavior of floating-point NaN values, this operator implements
a partial order.
Implementation
New types with a canonical partial order should implement this function for
two arguments of the new type.
Types with a canonical total order should implement isless instead.
See also isunordered.
Examples
julia> 'a' < 'b'
true
julia> "abc" < "abd"
true
julia> 5 < 3
falseBase.:<= — Function
<=(x)Create a function that compares its argument to x using <=, i.e.
a function equivalent to y -> y <= x.
The returned function is of type Base.Fix2{typeof(<=)}, which can be
used to implement specialized methods.
<=(x, y)
≤(x,y)Less-than-or-equals comparison operator. Falls back to (x < y) | (x == y).
Examples
julia> 'a' <= 'b'
true
julia> 7 ≤ 7 ≤ 9
true
julia> "abc" ≤ "abc"
true
julia> 5 <= 3
falseBase.:> — Function
>(x)Create a function that compares its argument to x using >, i.e.
a function equivalent to y -> y > x.
The returned function is of type Base.Fix2{typeof(>)}, which can be
used to implement specialized methods.
>(x, y)Greater-than comparison operator. Falls back to y < x.
Implementation
Generally, new types should implement < instead of this function,
and rely on the fallback definition >(x, y) = y < x.
Examples
julia> 'a' > 'b'
false
julia> 7 > 3 > 1
true
julia> "abc" > "abd"
false
julia> 5 > 3
trueBase.:>= — Function
>=(x)Create a function that compares its argument to x using >=, i.e.
a function equivalent to y -> y >= x.
The returned function is of type Base.Fix2{typeof(>=)}, which can be
used to implement specialized methods.
>=(x, y)
≥(x,y)Greater-than-or-equals comparison operator. Falls back to y <= x.
Implementation
New types should prefer to implement <= instead of this function,
and rely on the fallback definition >=(x, y) = y <= x.
Furthermore, in many cases it is enough to implement just < and
==, relying on the fallback definitions of both <= and >=.
Examples
julia> 'a' >= 'b'
false
julia> 7 ≥ 7 ≥ 3
true
julia> "abc" ≥ "abc"
true
julia> 5 >= 3
trueBase.cmp — Function
cmp(a::AbstractString, b::AbstractString)::IntCompare two strings. Return 0 if both strings have the same length and the character
at each index is the same in both strings. Return -1 if a is a prefix of b, or if
a comes before b in alphabetical order. Return 1 if b is a prefix of a, or if
b comes before a in alphabetical order (technically, lexicographical order by Unicode
code points).
Examples
julia> cmp("abc", "abc")
0
julia> cmp("ab", "abc")
-1
julia> cmp("abc", "ab")
1
julia> cmp("ab", "ac")
-1
julia> cmp("ac", "ab")
1
julia> cmp("α", "a")
1
julia> cmp("b", "β")
-1cmp(<, x, y)Return -1, 0, or 1 depending on whether x is less than, equal to, or greater than y,
respectively. The first argument specifies a less-than comparison function to use.
cmp(x,y)Return -1, 0, or 1 depending on whether x is less than, equal to, or greater than y,
respectively. Uses the total order implemented by isless.
Examples
julia> cmp(1, 2)
-1
julia> cmp(2, 1)
1
julia> cmp(2+im, 3-im)
ERROR: MethodError: no method matching isless(::Complex{Int64}, ::Complex{Int64})
[...]Base.:& — Function
x & yBitwise and. Implements three-valued logic,
returning missing if one operand is missing and the other is true. Add parentheses for
function application form: (&)(x, y).
Examples
julia> 4 & 10
0
julia> 4 & 12
4
julia> true & missing
missing
julia> false & missing
falseBase.xor — Function
xor(x, y)
⊻(x, y)Bitwise exclusive or of x and y. Implements
three-valued logic,
returning missing if one of the arguments is missing.
The infix operation a ⊻ b is a synonym for xor(a,b), and
⊻ can be typed by tab-completing \xor or \veebar in the Julia REPL.
Examples
julia> xor(true, false)
true
julia> xor(true, true)
false
julia> xor(true, missing)
missing
julia> false ⊻ false
false
julia> [true; true; false] .⊻ [true; false; false]
3-element BitVector:
0
1
0Base.nand — Function
nand(x, y)
⊼(x, y)Bitwise nand (not and) of x and y. Implements
three-valued logic,
returning missing if one of the arguments is missing.
The infix operation a ⊼ b is a synonym for nand(a,b), and
⊼ can be typed by tab-completing \nand or \barwedge in the Julia REPL.
Examples
julia> nand(true, false)
true
julia> nand(true, true)
false
julia> nand(true, missing)
missing
julia> false ⊼ false
true
julia> [true; true; false] .⊼ [true; false; false]
3-element BitVector:
0
1
1Base.nor — Function
nor(x, y)
⊽(x, y)Bitwise nor (not or) of x and y. Implements
three-valued logic,
returning missing if one of the arguments is missing and the
other is not true.
The infix operation a ⊽ b is a synonym for nor(a,b), and
⊽ can be typed by tab-completing \nor or \barvee in the Julia REPL.
Examples
julia> nor(true, false)
false
julia> nor(true, true)
false
julia> nor(true, missing)
false
julia> false ⊽ false
true
julia> false ⊽ missing
missing
julia> [true; true; false] .⊽ [true; false; false]
3-element BitVector:
0
0
1Base.:! — Function
!f::FunctionPredicate function negation: when the argument of ! is a function, it returns a composed function which computes the boolean negation of f.
See also ∘.
Examples
julia> str = "∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε"
"∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε"
julia> filter(isletter, str)
"εδxyδfxfyε"
julia> filter(!isletter, str)
"∀ > 0, ∃ > 0: |-| < ⇒ |()-()| < "Starting with Julia 1.9, !f returns a ComposedFunction instead of an anonymous function.
!(x)Boolean not. Implements three-valued logic,
returning missing if x is missing.
See also ~ for bitwise not.
Examples
julia> !true
false
julia> !false
true
julia> !missing
missing
julia> .![true false true]
1×3 BitMatrix:
0 1 0&& — Keyword
x && yShort-circuiting boolean AND.
This is equivalent to x ? y : false: it returns false if x is false and the result of evaluating y if x is true.
Note that if y is an expression, it is only evaluated when x is true, which is called "short-circuiting" behavior.
Also, y does not need to have a boolean value. This means that (condition) && (statement) can be used as shorthand for
if condition; statement; end for an arbitrary statement.
See also &, the ternary operator ? :, and the manual section on control flow.
Examples
julia> x = 3;
julia> x > 1 && x < 10 && x isa Int
true
julia> x < 0 && error("expected positive x")
false
julia> x > 0 && "not a boolean"
"not a boolean"|| — Keyword
x || yShort-circuiting boolean OR.
This is equivalent to x ? true : y: it returns true if x is true and the result of evaluating y if x is false.
Note that if y is an expression, it is only evaluated when x is false, which is called "short-circuiting" behavior.
Also, y does not need to have a boolean value. This means that (condition) || (statement) can be used as shorthand for
if !(condition); statement; end for an arbitrary statement.
Examples
julia> pi < 3 || ℯ < 3
true
julia> false || true || println("neither is true!")
true
julia> pi < 3 || "not a boolean"
"not a boolean"Mathematical Functions
Base.isapprox — Function
isapprox(x; kwargs...) / ≈(x; kwargs...)Create a function that compares its argument to x using ≈, i.e. a function equivalent to y -> y ≈ x.
The keyword arguments supported here are the same as those in the 2-argument isapprox.
isapprox(x, y; atol::Real=0, rtol::Real=atol>0 ? 0 : √eps, nans::Bool=false[, norm::Function])Inexact equality comparison. Two numbers compare equal if their relative distance or their
absolute distance is within tolerance bounds: isapprox returns true if
norm(x-y) <= max(atol, rtol*max(norm(x), norm(y))). The default atol (absolute tolerance) is zero and the
default rtol (relative tolerance) depends on the types of x and y. The keyword argument nans determines
whether or not NaN values are considered equal (defaults to false).
For real or complex floating-point values, if an atol > 0 is not specified, rtol defaults to
the square root of eps of the type of x or y, whichever is bigger (least precise).
This corresponds to requiring equality of about half of the significant digits. Otherwise,
e.g. for integer arguments or if an atol > 0 is supplied, rtol defaults to zero.
The norm keyword defaults to abs for numeric (x,y) and to LinearAlgebra.norm for
arrays (where an alternative norm choice is sometimes useful).
When x and y are arrays, if norm(x-y) is not finite (i.e. ±Inf
or NaN), the comparison falls back to checking whether all elements of x and y are
approximately equal component-wise.
The binary operator ≈ is equivalent to isapprox with the default arguments, and x ≉ y
is equivalent to !isapprox(x,y).
Note that x ≈ 0 (i.e., comparing to zero with the default tolerances) is
equivalent to x == 0 since the default atol is 0. In such cases, you should either
supply an appropriate atol (or use norm(x) ≤ atol) or rearrange your code (e.g.
use x ≈ y rather than x - y ≈ 0). It is not possible to pick a nonzero atol
automatically because it depends on the overall scaling (the "units") of your problem:
for example, in x - y ≈ 0, atol=1e-9 is an absurdly small tolerance if x is the
radius of the Earth in meters,
but an absurdly large tolerance if x is the
radius of a Hydrogen atom in meters.
Passing the norm keyword argument when comparing numeric (non-array) arguments
requires Julia 1.6 or later.
Examples
julia> isapprox(0.1, 0.15; atol=0.05)
true
julia> isapprox(0.1, 0.15; rtol=0.34)
true
julia> isapprox(0.1, 0.15; rtol=0.33)
false
julia> 0.1 + 1e-10 ≈ 0.1
true
julia> 1e-10 ≈ 0
false
julia> isapprox(1e-10, 0, atol=1e-8)
true
julia> isapprox([10.0^9, 1.0], [10.0^9, 2.0]) # using `norm`
trueBase.sin — Method
sin(x::T) where {T <: Number} -> float(T)Compute sine of x, where x is in radians.
Throw a DomainError if isinf(x), return a T(NaN) if isnan(x).
See also sind, sinpi, sincos, cis, asin.
Examples
julia> round.(sin.(range(0, 2pi, length=9)'), digits=3)
1×9 Matrix{Float64}:
0.0 0.707 1.0 0.707 0.0 -0.707 -1.0 -0.707 -0.0
julia> sind(45)
0.7071067811865476
julia> sinpi(1/4)
0.7071067811865475
julia> round.(sincos(pi/6), digits=3)
(0.5, 0.866)
julia> round(cis(pi/6), digits=3)
0.866 + 0.5im
julia> round(exp(im*pi/6), digits=3)
0.866 + 0.5imBase.Math.sincos — Method
sincos(x::T) where T -> Tuple{float(T),float(T)}Simultaneously compute the sine and cosine of x, where x is in radians, returning
a tuple (sine, cosine).
Throw a DomainError if isinf(x), return a (T(NaN), T(NaN)) if isnan(x).
Base.tan — Method
tan(x::T) where {T <: Number} -> float(T)Compute tangent of x, where x is in radians.
Throw a DomainError if isinf(x), return a T(NaN) if isnan(x).
See also tanh.
Base.Math.sind — Function
sind(x::T) where T -> float(T)Compute sine of x, where x is in degrees.
If x is a matrix, x needs to be a square matrix.
Throw a DomainError if isinf(x), return a T(NaN) if isnan(x).
Base.Math.cosd — Function
cosd(x::T) where T -> float(T)Compute cosine of x, where x is in degrees.
If x is a matrix, x needs to be a square matrix.
Throw a DomainError if isinf(x), return a T(NaN) if isnan(x).
Base.Math.tand — Function
tand(x::T) where T -> float(T)Compute tangent of x, where x is in degrees.
If x is a matrix, x needs to be a square matrix.
Throw a DomainError if isinf(x), return a T(NaN) if isnan(x).
Base.Math.sincosd — Function
sincosd(x::T) where T -> Tuple{float(T),float(T)}Simultaneously compute the sine and cosine of x, where x is in degrees, returning
a tuple (sine, cosine).
Throw a DomainError if isinf(x), return a (T(NaN), T(NaN)) tuple if isnan(x).
Base.Math.sinpi — Function
sinpi(x::T) where T -> float(T)Compute $\sin(\pi x)$ more accurately than sin(pi*x), especially for large x.
Throw a DomainError if isinf(x), return a T(NaN) if isnan(x).
Base.Math.cospi — Function
cospi(x::T) where T -> float(T)Compute $\cos(\pi x)$ more accurately than cos(pi*x), especially for large x.
Throw a DomainError if isinf(x), return a T(NaN) if isnan(x).
Base.Math.tanpi — Function
tanpi(x::T) where T -> float(T)Compute $\tan(\pi x)$ more accurately than tan(pi*x), especially for large x.
Throw a DomainError if isinf(x), return a T(NaN) if isnan(x).
Base.Math.sincospi — Function
sincospi(x::T) where T -> Tuple{float(T),float(T)}Simultaneously compute sinpi(x) and cospi(x) (the sine and cosine of π*x,
where x is in radians), returning a tuple (sine, cosine).
Throw a DomainError if isinf(x), return a (T(NaN), T(NaN)) tuple if isnan(x).
Base.tanh — Method
tanh(x)Compute hyperbolic tangent of x.
Examples
julia> tanh.(-3:3f0) # Here 3f0 isa Float32
7-element Vector{Float32}:
-0.9950548
-0.9640276
-0.7615942
0.0
0.7615942
0.9640276
0.9950548
julia> tan.(im .* (1:3))
3-element Vector{ComplexF64}:
0.0 + 0.7615941559557649im
0.0 + 0.9640275800758169im
0.0 + 0.9950547536867306imBase.asin — Method
asin(x::T) where {T <: Number} -> float(T)Compute the inverse sine of x, where the output is in radians.
Return a T(NaN) if isnan(x).
See also asind for output in degrees.
Examples
julia> asin.((0, 1/2, 1))
(0.0, 0.5235987755982989, 1.5707963267948966)
julia> asind.((0, 1/2, 1))
(0.0, 30.000000000000004, 90.0)Base.atan — Method
atan(y)
atan(y, x)Compute the inverse tangent of y or y/x, respectively.
For one real argument, this is the angle in radians between the positive x-axis and the point (1, y), returning a value in the interval $[-\pi/2, \pi/2]$.
For two arguments, this is the angle in radians between the positive x-axis and the
point (x, y), returning a value in the interval $[-\pi, \pi]$. This corresponds to a
standard atan2 function. Note that by convention
atan(0.0,x) is defined as $\pi$ and atan(-0.0,x) is defined as $-\pi$ when x < 0.
See also atand for degrees.
Examples
julia> rad2deg(atan(-1/√3))
-30.000000000000004
julia> rad2deg(atan(-1, √3))
-30.000000000000004
julia> rad2deg(atan(1, -√3))
150.0Base.Math.asind — Function
asind(x)Compute the inverse sine of x, where the output is in degrees.
If x is a matrix, x needs to be a square matrix.
Base.Math.acosd — Function
acosd(x)Compute the inverse cosine of x, where the output is in degrees.
If x is a matrix, x needs to be a square matrix.
Base.Math.atand — Function
atand(y::T) where T -> float(T)
atand(y::T, x::S) where {T,S} -> promote_type(T,S)
atand(y::AbstractMatrix{T}) where T -> AbstractMatrix{Complex{float(T)}}Compute the inverse tangent of y or y/x, respectively, where the output is in degrees.
Return a NaN if isnan(y) or isnan(x). The returned NaN is either a T in the single
argument version, or a promote_type(T,S) in the two argument version.
Base.Math.sec — Method
sec(x::T) where {T <: Number} -> float(T)Compute the secant of x, where x is in radians.
Throw a DomainError if isinf(x), return a T(NaN) if isnan(x).
Base.Math.csc — Method
csc(x::T) where {T <: Number} -> float(T)Compute the cosecant of x, where x is in radians.
Throw a DomainError if isinf(x), return a T(NaN) if isnan(x).
Base.Math.cot — Method
cot(x::T) where {T <: Number} -> float(T)Compute the cotangent of x, where x is in radians.
Throw a DomainError if isinf(x), return a T(NaN) if isnan(x).
Base.Math.secd — Function
secd(x::T) where {T <: Number} -> float(T)Compute the secant of x, where x is in degrees.
Throw a DomainError if isinf(x), return a T(NaN) if isnan(x).
Base.Math.cscd — Function
cscd(x::T) where {T <: Number} -> float(T)Compute the cosecant of x, where x is in degrees.
Throw a DomainError if isinf(x), return a T(NaN) if isnan(x).
Base.Math.cotd — Function
cotd(x::T) where {T <: Number} -> float(T)Compute the cotangent of x, where x is in degrees.
Throw a DomainError if isinf(x), return a T(NaN) if isnan(x).
Base.Math.asec — Method
asec(x::T) where {T <: Number} -> float(T)Compute the inverse secant of x, where the output is in radians.
Base.Math.acsc — Method
acsc(x::T) where {T <: Number} -> float(T)Compute the inverse cosecant of x, where the output is in radians.
Base.Math.acot — Method
acot(x::T) where {T <: Number} -> float(T)Compute the inverse cotangent of x, where the output is in radians.
Base.Math.asecd — Function
asecd(x)Compute the inverse secant of x, where the output is in degrees.
If x is a matrix, x needs to be a square matrix.
Base.Math.acscd — Function
acscd(x)Compute the inverse cosecant of x, where the output is in degrees.
If x is a matrix, x needs to be a square matrix.
Base.Math.acotd — Function
acotd(x)Compute the inverse cotangent of x, where the output is in degrees.
If x is a matrix, x needs to be a square matrix.
Base.Math.sech — Method
sech(x::T) where {T <: Number} -> float(T)Compute the hyperbolic secant of x.
Return a T(NaN) if isnan(x).
Base.Math.csch — Method
csch(x::T) where {T <: Number} -> float(T)Compute the hyperbolic cosecant of x.
Return a T(NaN) if isnan(x).
Base.Math.coth — Method
coth(x::T) where {T <: Number} -> float(T)Compute the hyperbolic cotangent of x.
Return a T(NaN) if isnan(x).
Base.asinh — Method
asinh(x)Compute the inverse hyperbolic sine of x.
Base.acosh — Method
acosh(x)Compute the inverse hyperbolic cosine of x.
Base.atanh — Method
atanh(x)Compute the inverse hyperbolic tangent of x.
Base.Math.asech — Method
asech(x::T) where {T <: Number} -> float(T)Compute the inverse hyperbolic secant of x.
Base.Math.acsch — Method
acsch(x::T) where {T <: Number} -> float(T)Compute the inverse hyperbolic cosecant of x.
Base.Math.acoth — Method
acoth(x::T) where {T <: Number} -> float(T)Compute the inverse hyperbolic cotangent of x.
Base.Math.sinc — Function
sinc(x::T) where {T <: Number} -> float(T)Compute normalized sinc function $\operatorname{sinc}(x) = \sin(\pi x) / (\pi x)$ if $x \neq 0$, and $1$ if $x = 0$.
Return a T(NaN) if isnan(x).
See also cosc, its derivative.
Base.Math.cosc — Function
cosc(x::T) where {T <: Number} -> float(T)Compute $\cos(\pi x) / x - \sin(\pi x) / (\pi x^2)$ if $x \neq 0$, and $0$ if
$x = 0$. This is the derivative of sinc(x).
Return a T(NaN) if isnan(x).
See also sinc.
Base.Math.deg2rad — Function
deg2rad(x)Convert x from degrees to radians.
Examples
julia> deg2rad(90)
1.5707963267948966Base.Math.rad2deg — Function
Base.Math.hypot — Function
hypot(x, y)Compute the hypotenuse $\sqrt{|x|^2+|y|^2}$ avoiding overflow and underflow.
This code is an implementation of the algorithm described in:
An Improved Algorithm for hypot(a,b)
by Carlos F. Borges
The article is available online at arXiv at the link
https://arxiv.org/abs/1904.09481
hypot(x...)Compute the hypotenuse $\sqrt{\sum |x_i|^2}$ avoiding overflow and underflow.
See also norm in the LinearAlgebra standard library.
Examples
julia> a = Int64(10)^10;
julia> hypot(a, a)
1.4142135623730951e10
julia> √(a^2 + a^2) # a^2 overflows
ERROR: DomainError with -2.914184810805068e18:
sqrt was called with a negative real argument but will only return a complex result if called with a complex argument. Try sqrt(Complex(x)).
Stacktrace:
[...]
julia> hypot(3, 4im)
5.0
julia> hypot(-5.7)
5.7
julia> hypot(3, 4im, 12.0)
13.0
julia> using LinearAlgebra
julia> norm([a, a, a, a]) == hypot(a, a, a, a)
trueBase.log — Method
log(x)Compute the natural logarithm of x.
Throw a DomainError for negative Real arguments.
Use Complex arguments to obtain Complex results.
See also ℯ, log1p, log2, log10.
Examples
julia> log(2)
0.6931471805599453
julia> log(-3)
ERROR: DomainError with -3.0:
log was called with a negative real argument but will only return a complex result if called with a complex argument. Try log(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31
[...]
julia> log(-3 + 0im)
1.0986122886681098 + 3.141592653589793im
julia> log(-3 - 0.0im)
1.0986122886681098 - 3.141592653589793im
julia> log.(exp.(-1:1))
3-element Vector{Float64}:
-1.0
0.0
1.0Base.log — Method
log(b,x)Compute the base b logarithm of x. Throw a DomainError for negative
Real arguments.
Examples
julia> log(4,8)
1.5
julia> log(4,2)
0.5
julia> log(-2, 3)
ERROR: DomainError with -2.0:
log was called with a negative real argument but will only return a complex result if called with a complex argument. Try log(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31
[...]
julia> log(2, -3)
ERROR: DomainError with -3.0:
log was called with a negative real argument but will only return a complex result if called with a complex argument. Try log(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31
[...]Base.log2 — Function
log2(x)Compute the logarithm of x to base 2. Throw a DomainError for negative
Real arguments.
See also: exp2, ldexp, ispow2.
Examples
julia> log2(4)
2.0
julia> log2(10)
3.321928094887362
julia> log2(-2)
ERROR: DomainError with -2.0:
log2 was called with a negative real argument but will only return a complex result if called with a complex argument. Try log2(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(f::Symbol, x::Float64) at ./math.jl:31
[...]
julia> log2.(2.0 .^ (-1:1))
3-element Vector{Float64}:
-1.0
0.0
1.0Base.log10 — Function
log10(x)Compute the logarithm of x to base 10.
Throw a DomainError for negative Real arguments.
Examples
julia> log10(100)
2.0
julia> log10(2)
0.3010299956639812
julia> log10(-2)
ERROR: DomainError with -2.0:
log10 was called with a negative real argument but will only return a complex result if called with a complex argument. Try log10(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(f::Symbol, x::Float64) at ./math.jl:31
[...]Base.log1p — Function
log1p(x)Accurate natural logarithm of 1+x. Throw a DomainError for Real
arguments less than -1.
Examples
julia> log1p(-0.5)
-0.6931471805599453
julia> log1p(0)
0.0
julia> log1p(-2)
ERROR: DomainError with -2.0:
log1p was called with a real argument < -1 but will only return a complex result if called with a complex argument. Try log1p(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31
[...]Base.Math.frexp — Function
frexp(val)Return (x,exp) such that x has a magnitude in the interval $[1/2, 1)$ or 0,
and val is equal to $x \times 2^{exp}$.
See also significand, exponent, ldexp.
Examples
julia> frexp(6.0)
(0.75, 3)
julia> significand(6.0), exponent(6.0) # interval [1, 2) instead
(1.5, 2)
julia> frexp(0.0), frexp(NaN), frexp(-Inf) # exponent would give an error
((0.0, 0), (NaN, 0), (-Inf, 0))Base.exp10 — Function
exp10(x)Compute the base 10 exponential of x, in other words $10^x$.
Examples
julia> exp10(2)
100.0
julia> 10^2
100Base.Math.ldexp — Function
Base.Math.modf — Function
modf(x)Return a tuple (fpart, ipart) of the fractional and integral parts of a number. Both parts
have the same sign as the argument.
Examples
julia> modf(3.5)
(0.5, 3.0)
julia> modf(-3.5)
(-0.5, -3.0)Base.expm1 — Function
expm1(x)Accurately compute $e^x-1$. It avoids the loss of precision involved in the direct evaluation of exp(x) - 1 for small values of x.
Examples
julia> expm1(1e-16)
1.0e-16
julia> exp(1e-16) - 1
0.0Base.round — Function
round([T,] x, [r::RoundingMode])
round(x, [r::RoundingMode]; digits::Integer=0, base = 10)
round(x, [r::RoundingMode]; sigdigits::Integer, base = 10)Rounds the number x.
Without keyword arguments, x is rounded to an integer value, returning a value of type
T, or of the same type of x if no T is provided. An InexactError will be
thrown if the value is not representable by T, similar to convert.
If the digits keyword argument is provided, it rounds to the specified number of digits
after the decimal place (or before if digits is negative), in base base.
If the sigdigits keyword argument is provided, it rounds to the specified number of
significant digits, in base base.
The RoundingMode r controls the direction of the rounding; the default is
RoundNearest, which rounds to the nearest integer, with ties (fractional values
of 0.5) being rounded to the nearest even integer. Note that round may give incorrect
results if the global rounding mode is changed (see rounding).
When rounding to a floating point type, will round to integers representable by that type
(and Inf) rather than true integers. Inf is treated as one ulp greater than the
floatmax(T) for purposes of determining "nearest", similar to convert.
Examples
julia> round(1.7)
2.0
julia> round(Int, 1.7)
2
julia> round(1.5)
2.0
julia> round(2.5)
2.0
julia> round(pi; digits=2)
3.14
julia> round(pi; digits=3, base=2)
3.125
julia> round(123.456; sigdigits=2)
120.0
julia> round(357.913; sigdigits=4, base=2)
352.0
julia> round(Float16, typemax(UInt128))
Inf16
julia> floor(Float16, typemax(UInt128))
Float16(6.55e4)Rounding to specified digits in bases other than 2 can be inexact when
operating on binary floating point numbers. For example, the Float64
value represented by 1.15 is actually less than 1.15, yet will be
rounded to 1.2. For example:
julia> x = 1.15
1.15
julia> big(1.15)
1.149999999999999911182158029987476766109466552734375
julia> x < 115//100
true
julia> round(x, digits=1)
1.2Extensions
To extend round to new numeric types, it is typically sufficient to define Base.round(x::NewType, r::RoundingMode).
Base.Rounding.RoundingMode — Type
RoundingModeA type used for controlling the rounding mode of floating point operations (via
rounding/setrounding functions), or as
optional arguments for rounding to the nearest integer (via the round
function).
Currently supported rounding modes are:
Base.Rounding.RoundNearest — Constant
RoundNearestThe default rounding mode. Rounds to the nearest integer, with ties (fractional values of 0.5) being rounded to the nearest even integer.
Base.Rounding.RoundNearestTiesAway — Constant
RoundNearestTiesAwayRounds to nearest integer, with ties rounded away from zero (C/C++
round behaviour).
Base.Rounding.RoundNearestTiesUp — Constant
RoundNearestTiesUpRounds to nearest integer, with ties rounded toward positive infinity (Java/JavaScript
round behaviour).
Base.Rounding.RoundToZero — Constant
Base.Rounding.RoundFromZero — Constant
RoundFromZeroRounds away from zero.
RoundFromZero requires at least Julia 1.9. Prior versions support
RoundFromZero for BigFloats only.
Examples
julia> BigFloat("1.0000000000000001", 5, RoundFromZero)
1.06Base.Rounding.RoundUp — Constant
Base.Rounding.RoundDown — Constant
Base.round — Method
round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]])
round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; digits=0, base=10)
round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; sigdigits, base=10)Return the nearest integral value of the same type as the complex-valued z to z,
breaking ties using the specified RoundingModes. The first
RoundingMode is used for rounding the real components while the
second is used for rounding the imaginary components.
RoundingModeReal and RoundingModeImaginary default to RoundNearest,
which rounds to the nearest integer, with ties (fractional values of 0.5)
being rounded to the nearest even integer.
Examples
julia> round(3.14 + 4.5im)
3.0 + 4.0im
julia> round(3.14 + 4.5im, RoundUp, RoundNearestTiesUp)
4.0 + 5.0im
julia> round(3.14159 + 4.512im; digits = 1)
3.1 + 4.5im
julia> round(3.14159 + 4.512im; sigdigits = 3)
3.14 + 4.51imBase.ceil — Function
ceil([T,] x)
ceil(x; digits::Integer= [, base = 10])
ceil(x; sigdigits::Integer= [, base = 10])ceil(x) returns the nearest integral value of the same type as x that is greater than or
equal to x.
ceil(T, x) converts the result to type T, throwing an InexactError if the ceiled
value is not representable as a T.
Keywords digits, sigdigits and base work as for round.
To support ceil for a new type, define Base.round(x::NewType, ::RoundingMode{:Up}).
Base.floor — Function
floor([T,] x)
floor(x; digits::Integer= [, base = 10])
floor(x; sigdigits::Integer= [, base = 10])floor(x) returns the nearest integral value of the same type as x that is less than or
equal to x.
floor(T, x) converts the result to type T, throwing an InexactError if the floored
value is not representable a T.
Keywords digits, sigdigits and base work as for round.
To support floor for a new type, define Base.round(x::NewType, ::RoundingMode{:Down}).
Base.trunc — Function
trunc([T,] x)
trunc(x; digits::Integer= [, base = 10])
trunc(x; sigdigits::Integer= [, base = 10])trunc(x) returns the nearest integral value of the same type as x whose absolute value
is less than or equal to the absolute value of x.
trunc(T, x) converts the result to type T, throwing an InexactError if the truncated
value is not representable a T.
Keywords digits, sigdigits and base work as for round.
To support trunc for a new type, define Base.round(x::NewType, ::RoundingMode{:ToZero}).
See also: %, floor, unsigned, unsafe_trunc.
Examples
julia> trunc(2.22)
2.0
julia> trunc(-2.22, digits=1)
-2.2
julia> trunc(Int, -2.22)
-2Base.unsafe_trunc — Function
unsafe_trunc(T, x)Return the nearest integral value of type T whose absolute value is
less than or equal to the absolute value of x. If the value is not representable by T,
an arbitrary value will be returned.
See also trunc.
Examples
julia> unsafe_trunc(Int, -2.2)
-2
julia> unsafe_trunc(Int, NaN) isa Int
trueBase.minmax — Function
minmax(x, y)Return (min(x,y), max(x,y)).
See also extrema that returns (minimum(x), maximum(x)).
Examples
julia> minmax('c','b')
('b', 'c')Base.clamp — Function
clamp(x::Integer, r::AbstractUnitRange)Clamp x to lie within range r.
clamp(x, T)::TClamp x between typemin(T) and typemax(T) and convert the result to type T.
See also trunc.
Examples
julia> clamp(200, Int8)
127
julia> clamp(-200, Int8)
-128
julia> trunc(Int, 4pi^2)
39clamp(x, lo, hi)Return x if lo <= x <= hi. If x > hi, return hi. If x < lo, return lo. Arguments
are promoted to a common type.
Examples
julia> clamp.([pi, 1.0, big(10)], 2.0, 9.0)
3-element Vector{BigFloat}:
3.141592653589793238462643383279502884197169399375105820974944592307816406286198
2.0
9.0
julia> clamp.([11, 8, 5], 10, 6) # an example where lo > hi
3-element Vector{Int64}:
6
6
10Base.clamp! — Function
clamp!(array::AbstractArray, lo, hi)Restrict values in array to the specified range, in-place.
See also clamp.
Examples
julia> row = collect(-4:4)';
julia> clamp!(row, 0, Inf)
1×9 adjoint(::Vector{Int64}) with eltype Int64:
0 0 0 0 0 1 2 3 4
julia> clamp.((-4:4)', 0, Inf)
1×9 Matrix{Float64}:
0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0Base.abs — Function
abs(x)The absolute value of x.
When abs is applied to signed integers, overflow may occur,
resulting in the return of a negative value. This overflow occurs only
when abs is applied to the minimum representable value of a signed
integer. That is, when x == typemin(typeof(x)), abs(x) == x < 0,
not -x as might be expected.
See also: abs2, unsigned, sign.
Examples
julia> abs(-3)
3
julia> abs(1 + im)
1.4142135623730951
julia> abs.(Int8[-128 -127 -126 0 126 127]) # overflow at typemin(Int8)
1×6 Matrix{Int8}:
-128 127 126 0 126 127
julia> maximum(abs, [1, -2, 3, -4])
4Base.Checked — Module
CheckedThe Checked module provides arithmetic functions for the built-in signed and unsigned
Integer types which throw an error when an overflow occurs. They are named like checked_sub,
checked_div, etc. In addition, add_with_overflow, sub_with_overflow, mul_with_overflow
return both the unchecked results and a boolean value denoting the presence of an overflow.
Base.Checked.checked_abs — Function
Base.checked_abs(x)Calculates abs(x), checking for overflow errors where applicable.
For example, standard two's complement signed integers (e.g. Int)
cannot represent abs(typemin(Int)), thus leading to an overflow.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_neg — Function
Base.checked_neg(x)Calculates -x, checking for overflow errors where applicable. For
example, standard two's complement signed integers (e.g. Int) cannot
represent -typemin(Int), thus leading to an overflow.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_add — Function
Base.checked_add(x, y)Calculates x+y, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_sub — Function
Base.checked_sub(x, y)Calculates x-y, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_mul — Function
Base.checked_mul(x, y)Calculates x*y, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_div — Function
Base.checked_div(x, y)Calculates div(x,y), checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_rem — Function
Base.checked_rem(x, y)Calculates x%y, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_fld — Function
Base.checked_fld(x, y)Calculates fld(x,y), checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_mod — Function
Base.checked_mod(x, y)Calculates mod(x,y), checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_cld — Function
Base.checked_cld(x, y)Calculates cld(x,y), checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_pow — Function
Base.checked_pow(x, y)Calculates ^(x,y), checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.add_with_overflow — Function
Base.add_with_overflow(x, y) -> (r, f)Calculates r = x+y, with the flag f indicating whether overflow has occurred.
Base.Checked.sub_with_overflow — Function
Base.sub_with_overflow(x, y) -> (r, f)Calculates r = x-y, with the flag f indicating whether overflow has occurred.
Base.Checked.mul_with_overflow — Function
Base.mul_with_overflow(x, y) -> (r, f)Calculates r = x*y, with the flag f indicating whether overflow has occurred.
Base.copysign — Function
copysign(x, y) -> zReturn z which has the magnitude of x and the same sign as y.
Examples
julia> copysign(1, -2)
-1
julia> copysign(-1, 2)
1Base.signbit — Function
signbit(x)Return true if the value of the sign of x is negative, otherwise false.
Examples
julia> signbit(-4)
true
julia> signbit(5)
false
julia> signbit(5.5)
false
julia> signbit(-4.1)
trueBase.flipsign — Function
flipsign(x, y)Return x with its sign flipped if y is negative. For example abs(x) = flipsign(x,x).
Examples
julia> flipsign(5, 3)
5
julia> flipsign(5, -3)
-5Base.sqrt — Method
sqrt(x)Return $\sqrt{x}$.
Throw a DomainError for negative Real arguments.
Use Complex negative arguments instead to obtain a Complex result.
The prefix operator √ is equivalent to sqrt.
See also: hypot.
Examples
julia> sqrt(big(81))
9.0
julia> sqrt(big(-81))
ERROR: DomainError with -81.0:
NaN result for non-NaN input.
Stacktrace:
[1] sqrt(::BigFloat) at ./mpfr.jl:501
[...]
julia> sqrt(big(complex(-81)))
0.0 + 9.0im
julia> sqrt(-81 - 0.0im) # -0.0im is below the branch cut
0.0 - 9.0im
julia> .√(1:4)
4-element Vector{Float64}:
1.0
1.4142135623730951
1.7320508075688772
2.0Base.isqrt — Function
isqrt(n::Integer)Integer square root: the largest integer m such that m*m <= n.
julia> isqrt(5)
2Base.Math.cbrt — Method
cbrt(x::Real)Return the cube root of x, i.e. $x^{1/3}$. Negative values are accepted
(returning the negative real root when $x < 0$).
The prefix operator ∛ is equivalent to cbrt.
Examples
julia> cbrt(big(27))
3.0
julia> cbrt(big(-27))
-3.0Base.Math.fourthroot — Method
fourthroot(x)Return the fourth root of x by applying sqrt twice successively.
Base.real — Function
real(A::AbstractArray)Return an array containing the real part of each entry in array A.
Equivalent to real.(A), except that when eltype(A) <: Real
A is returned without copying, and that when A has zero dimensions,
a 0-dimensional array is returned (rather than a scalar).
Examples
julia> real([1, 2im, 3 + 4im])
3-element Vector{Int64}:
1
0
3
julia> real(fill(2 - im))
0-dimensional Array{Int64, 0}:
2real(T::Type)Return the type that represents the real part of a value of type T.
e.g: for T == Complex{R}, returns R.
Equivalent to typeof(real(zero(T))).
Examples
julia> real(Complex{Int})
Int64
julia> real(Float64)
Float64real(z)Return the real part of the complex number z.
See also: imag, reim, complex, isreal, Real.
Examples
julia> real(1 + 3im)
1Base.imag — Function
imag(A::AbstractArray)Return an array containing the imaginary part of each entry in array A.
Equivalent to imag.(A), except that when A has zero dimensions,
a 0-dimensional array is returned (rather than a scalar).
Examples
julia> imag([1, 2im, 3 + 4im])
3-element Vector{Int64}:
0
2
4
julia> imag(fill(2 - im))
0-dimensional Array{Int64, 0}:
-1imag(z)Return the imaginary part of the complex number z.
See also: conj, reim, adjoint, angle.
Examples
julia> imag(1 + 3im)
3Base.reim — Function
reim(A::AbstractArray)Return a tuple of two arrays containing respectively the real and the imaginary
part of each entry in A.
Equivalent to (real.(A), imag.(A)), except that when eltype(A) <: Real
A is returned without copying to represent the real part, and that when A has
zero dimensions, a 0-dimensional array is returned (rather than a scalar).
Examples
julia> reim([1, 2im, 3 + 4im])
([1, 0, 3], [0, 2, 4])
julia> reim(fill(2 - im))
(fill(2), fill(-1))reim(z)Return a tuple of the real and imaginary parts of the complex number z.
Examples
julia> reim(1 + 3im)
(1, 3)Base.conj — Function
conj(A::AbstractArray)Return an array containing the complex conjugate of each entry in array A.
Equivalent to conj.(A), except that when eltype(A) <: Real
A is returned without copying, and that when A has zero dimensions,
a 0-dimensional array is returned (rather than a scalar).
Examples
julia> conj([1, 2im, 3 + 4im])
3-element Vector{Complex{Int64}}:
1 + 0im
0 - 2im
3 - 4im
julia> conj(fill(2 - im))
0-dimensional Array{Complex{Int64}, 0}:
2 + 1imconj(z)Compute the complex conjugate of a complex number z.
Examples
julia> conj(1 + 3im)
1 - 3imBase.angle — Function
angle(z)Compute the phase angle in radians of a complex number z.
Returns a number -pi ≤ angle(z) ≤ pi, and is thus discontinuous
along the negative real axis.
Examples
julia> rad2deg(angle(1 + im))
45.0
julia> rad2deg(angle(1 - im))
-45.0
julia> rad2deg(angle(-1 + 1e-20im))
180.0
julia> rad2deg(angle(-1 - 1e-20im))
-180.0Base.binomial — Function
binomial(x::Number, k::Integer)The generalized binomial coefficient, defined for k ≥ 0 by
the polynomial
\[\frac{1}{k!} \prod_{j=0}^{k-1} (x - j)\]
When k < 0 it returns zero.
For the case of integer x, this is equivalent to the ordinary
integer binomial coefficient
\[\binom{n}{k} = \frac{n!}{k! (n-k)!}\]
Further generalizations to non-integer k are mathematically possible, but
involve the Gamma function and/or the beta function, which are
not provided by the Julia standard library but are available
in external packages such as SpecialFunctions.jl.
External links
- Binomial coefficient on Wikipedia.
binomial(n::Integer, k::Integer)The binomial coefficient $\binom{n}{k}$, being the coefficient of the $k$th term in the polynomial expansion of $(1+x)^n$.
If $n$ is non-negative, then it is the number of ways to choose k out of n items:
\[\binom{n}{k} = \frac{n!}{k! (n-k)!}\]
where $n!$ is the factorial function.
If $n$ is negative, then it is defined in terms of the identity
\[\binom{n}{k} = (-1)^k \binom{k-n-1}{k}\]
See also factorial.
Examples
julia> binomial(5, 3)
10
julia> factorial(5) ÷ (factorial(5-3) * factorial(3))
10
julia> binomial(-5, 3)
-35External links
- Binomial coefficient on Wikipedia.
Base.factorial — Function
factorial(n::Integer)Factorial of n. If n is an Integer, the factorial is computed as an
integer (promoted to at least 64 bits). Note that this may overflow if n is not small,
but you can use factorial(big(n)) to compute the result exactly in arbitrary precision.
See also binomial.
Examples
julia> factorial(6)
720
julia> factorial(21)
ERROR: OverflowError: 21 is too large to look up in the table; consider using `factorial(big(21))` instead
Stacktrace:
[...]
julia> factorial(big(21))
51090942171709440000External links
- Factorial on Wikipedia.
Base.gcd — Function
gcd(x, y...)Greatest common (positive) divisor (or zero if all arguments are zero). The arguments may be integer and rational numbers.
$a$ is a divisor of $b$ if there exists an integer $m$ such that $ma=b$.
Examples
julia> gcd(6, 9)
3
julia> gcd(6, -9)
3
julia> gcd(6, 0)
6
julia> gcd(0, 0)
0
julia> gcd(1//3, 2//3)
1//3
julia> gcd(1//3, -2//3)
1//3
julia> gcd(1//3, 2)
1//3
julia> gcd(0, 0, 10, 15)
5Base.lcm — Function
lcm(x, y...)Least common (positive) multiple (or zero if any argument is zero). The arguments may be integer and rational numbers.
$a$ is a multiple of $b$ if there exists an integer $m$ such that $a=mb$.
Examples
julia> lcm(2, 3)
6
julia> lcm(-2, 3)
6
julia> lcm(0, 3)
0
julia> lcm(0, 0)
0
julia> lcm(1//3, 2//3)
2//3
julia> lcm(1//3, -2//3)
2//3
julia> lcm(1//3, 2)
2//1
julia> lcm(1, 3, 5, 7)
105Base.gcdx — Function
gcdx(a, b...)Compute the greatest common (positive) divisor of a and b and their Bézout
coefficients, i.e. the integer coefficients u and v that satisfy
$u*a + v*b = d = gcd(a, b)$. $gcdx(a, b)$ returns $(d, u, v)$.
For more arguments than two, i.e., gcdx(a, b, c, ...) the Bézout coefficients are computed
recursively, returning a solution (d, u, v, w, ...) to
$u*a + v*b + w*c + ... = d = gcd(a, b, c, ...)$.
The arguments may be integer and rational numbers.
Examples
julia> gcdx(12, 42)
(6, -3, 1)
julia> gcdx(240, 46)
(2, -9, 47)
julia> gcdx(15, 12, 20)
(1, 7, -7, -1)Bézout coefficients are not uniquely defined. gcdx returns the minimal
Bézout coefficients that are computed by the extended Euclidean algorithm.
(Ref: D. Knuth, TAoCP, 2/e, p. 325, Algorithm X.)
For signed integers, these coefficients u and v are minimal in
the sense that $|u| < |b/d|$ and $|v| < |a/d|$. Furthermore,
the signs of u and v are chosen so that d is positive.
For unsigned integers, the coefficients u and v might be near
their typemax, and the identity then holds only via the unsigned
integers' modulo arithmetic.
Base.ispow2 — Function
ispow2(n::Number)::BoolTest whether n is an integer power of two.
See also count_ones, prevpow, nextpow.
Examples
julia> ispow2(4)
true
julia> ispow2(5)
false
julia> ispow2(4.5)
false
julia> ispow2(0.25)
true
julia> ispow2(1//8)
trueBase.nextpow — Function
nextpow(a, x)The smallest a^n not less than x, where n is a non-negative integer. a must be
greater than 1, and x must be greater than 0.
See also prevpow.
Examples
julia> nextpow(2, 7)
8
julia> nextpow(2, 9)
16
julia> nextpow(5, 20)
25
julia> nextpow(4, 16)
16Base.prevpow — Function
prevpow(a, x)The largest a^n not greater than x, where n is a non-negative integer.
a must be greater than 1, and x must not be less than 1.
Examples
julia> prevpow(2, 7)
4
julia> prevpow(2, 9)
8
julia> prevpow(5, 20)
5
julia> prevpow(4, 16)
16Base.nextprod — Function
nextprod(factors::Union{Tuple,AbstractVector}, n)Next integer greater than or equal to n that can be written as $\prod k_i^{p_i}$ for integers
$p_1$, $p_2$, etcetera, for factors $k_i$ in factors.
Examples
julia> nextprod((2, 3), 105)
108
julia> 2^2 * 3^3
108Base.invmod — Function
invmod(n::Integer, T) where {T <: Base.BitInteger}
invmod(n::T) where {T <: Base.BitInteger}Compute the modular inverse of n in the integer ring of type T, i.e. modulo
2^N where N = 8*sizeof(T) (e.g. N = 32 for Int32). In other words, these
methods satisfy the following identities:
n * invmod(n) == 1
(n * invmod(n, T)) % T == 1
(n % T) * invmod(n, T) == 1Note that * here is modular multiplication in the integer ring, T. This will
throw an error if n is even, because then it is not relatively prime with 2^N
and thus has no such inverse.
Specifying the modulus implied by an integer type as an explicit value is often inconvenient since the modulus is by definition too big to be represented by the type.
The modular inverse is computed much more efficiently than the general case using the algorithm described in https://arxiv.org/pdf/2204.04342.pdf.
invmod(n::Integer, m::Integer)Take the inverse of n modulo m: y such that $n y = 1 \pmod m$,
and $div(y,m) = 0$. This will throw an error if $m = 0$, or if
$gcd(n,m) \neq 1$.
Examples
julia> invmod(2, 5)
3
julia> invmod(2, 3)
2
julia> invmod(5, 6)
5Base.powermod — Function
powermod(x::Integer, p::Integer, m)Compute $x^p \pmod m$.
Examples
julia> powermod(2, 6, 5)
4
julia> mod(2^6, 5)
4
julia> powermod(5, 2, 20)
5
julia> powermod(5, 2, 19)
6
julia> powermod(5, 3, 19)
11Base.ndigits — Function
ndigits(n::Integer; base::Integer=10, pad::Integer=1)Compute the number of digits in integer n written in base base
(base must not be in [-1, 0, 1]), optionally padded with zeros
to a specified size (the result will never be less than pad).
See also digits, count_ones.
Examples
julia> ndigits(0)
1
julia> ndigits(12345)
5
julia> ndigits(1022, base=16)
3
julia> string(1022, base=16)
"3fe"
julia> ndigits(123, pad=5)
5
julia> ndigits(-123)
3Base.add_sum — Function
Base.add_sum(x, y)The reduction operator used in sum. The main difference from + is that small
integers are promoted to Int/UInt.
Base.uabs — Function
Base.uabs(x::Integer)Return the absolute value of x, possibly returning a different type should the
operation be susceptible to overflow. This typically arises when x is a two's complement
signed integer, so that abs(typemin(x)) == typemin(x) < 0, in which case the result of
uabs(x) will be an unsigned integer of the same size.
Base.widemul — Function
widemul(x, y)Multiply x and y, giving the result as a larger type.
See also promote, Base.add_sum.
Examples
julia> widemul(Float32(3.0), 4.0) isa BigFloat
true
julia> typemax(Int8) * typemax(Int8)
1
julia> widemul(typemax(Int8), typemax(Int8)) # == 127^2
16129Base.Math.evalpoly — Function
evalpoly(x, p)Evaluate the polynomial $\sum_k x^{k-1} p[k]$ for the coefficients p[1], p[2], ...;
that is, the coefficients are given in ascending order by power of x.
Loops are unrolled at compile time if the number of coefficients is statically known, i.e.
when p is a Tuple.
This function generates efficient code using Horner's method if x is real, or using
a Goertzel-like [DK62] algorithm if x is complex.
Examples
julia> evalpoly(2, (1, 2, 3))
17Base.Math.@evalpoly — Macro
@evalpoly(z, c...)Evaluate the polynomial $\sum_k z^{k-1} c[k]$ for the coefficients c[1], c[2], ...;
that is, the coefficients are given in ascending order by power of z. This macro expands
to efficient inline code that uses either Horner's method or, for complex z, a more
efficient Goertzel-like algorithm.
See also evalpoly.
Examples
julia> @evalpoly(3, 1, 0, 1)
10
julia> @evalpoly(2, 1, 0, 1)
5
julia> @evalpoly(2, 1, 1, 1)
7Base.FastMath.@fastmath — Macro
@fastmath exprExecute a transformed version of the expression, which calls functions that may violate strict IEEE semantics. This allows the fastest possible operation, but results are undefined – be careful when doing this, as it may change numerical results.
This sets the LLVM Fast-Math flags,
and corresponds to the -ffast-math option in clang. See [the notes on performance
annotations](@ref man-performance-annotations) for more details.
Examples
julia> @fastmath 1+2
3
julia> @fastmath(sin(3))
0.1411200080598672Customizable binary operators
Some unicode characters can be used to define new binary operators
that support infix notation.
For example
⊗(x,y) = kron(x,y)
defines the ⊗ (otimes) function to be the Kronecker product,
and one can call it as binary operator using infix syntax:
C = A ⊗ B
as well as with the usual prefix syntax
C = ⊗(A,B).
Other characters that support such extensions include
\odot ⊙
and
\oplus ⊕
The complete list is in the parser code: https://github.com/JuliaLang/julia/blob/master/src/julia-parser.scm
Those that are parsed like * (in terms of precedence) include
* / ÷ % & ⋅ ∘ × |\\| ∩ ∧ ⊗ ⊘ ⊙ ⊚ ⊛ ⊠ ⊡ ⊓ ∗ ∙ ∤ ⅋ ≀ ⊼ ⋄ ⋆ ⋇ ⋉ ⋊ ⋋ ⋌ ⋏ ⋒ ⟑ ⦸ ⦼ ⦾ ⦿ ⧶ ⧷ ⨇ ⨰ ⨱ ⨲ ⨳ ⨴ ⨵ ⨶ ⨷ ⨸ ⨻ ⨼ ⨽ ⩀ ⩃ ⩄ ⩋ ⩍ ⩎ ⩑ ⩓ ⩕ ⩘ ⩚ ⩜ ⩞ ⩟ ⩠ ⫛ ⊍ ▷ ⨝ ⟕ ⟖ ⟗
and those that are parsed like + include
+ - |\|| ⊕ ⊖ ⊞ ⊟ |++| ∪ ∨ ⊔ ± ∓ ∔ ∸ ≏ ⊎ ⊻ ⊽ ⋎ ⋓ ⟇ ⧺ ⧻ ⨈ ⨢ ⨣ ⨤ ⨥ ⨦ ⨧ ⨨ ⨩ ⨪ ⨫ ⨬ ⨭ ⨮ ⨹ ⨺ ⩁ ⩂ ⩅ ⩊ ⩌ ⩏ ⩐ ⩒ ⩔ ⩖ ⩗ ⩛ ⩝ ⩡ ⩢ ⩣
There are many others that are related to arrows, comparisons, and powers.
- DK62Donald Knuth, Art of Computer Programming, Volume 2: Seminumerical Algorithms, Sec. 4.6.4.