Arrays
Constructors and Types
Core.AbstractArray — Type
AbstractArray{T,N}Supertype for N-dimensional arrays (or array-like types) with elements of type T.
Array and other types are subtypes of this. See the manual section on the
AbstractArray interface.
See also: AbstractVector, AbstractMatrix, eltype, ndims.
Base.AbstractVector — Type
AbstractVector{T}Supertype for one-dimensional arrays (or array-like types) with
elements of type T. Alias for AbstractArray{T,1}.
Base.AbstractMatrix — Type
AbstractMatrix{T}Supertype for two-dimensional arrays (or array-like types) with
elements of type T. Alias for AbstractArray{T,2}.
Base.AbstractVecOrMat — Type
AbstractVecOrMat{T}Union type of AbstractVector{T} and AbstractMatrix{T}.
Core.Array — Type
Array{T,N} <: AbstractArray{T,N}N-dimensional dense array with elements of type T.
Core.Array — Method
Array{T}(undef, dims)
Array{T,N}(undef, dims)Construct an uninitialized N-dimensional Array
containing elements of type T. N can either be supplied explicitly,
as in Array{T,N}(undef, dims), or be determined by the length or number of dims.
dims may be a tuple or a series of integer arguments corresponding to the lengths
in each dimension. If the rank N is supplied explicitly, then it must
match the length or number of dims. Here undef is
the UndefInitializer.
Examples
julia> A = Array{Float64, 2}(undef, 2, 3) # N given explicitly
2×3 Matrix{Float64}:
6.90198e-310 6.90198e-310 6.90198e-310
6.90198e-310 6.90198e-310 0.0
julia> B = Array{Float64}(undef, 4) # N determined by the input
4-element Vector{Float64}:
2.360075077e-314
NaN
2.2671131793e-314
2.299821756e-314
julia> similar(B, 2, 4, 1) # use typeof(B), and the given size
2×4×1 Array{Float64, 3}:
[:, :, 1] =
2.26703e-314 2.26708e-314 0.0 2.80997e-314
0.0 2.26703e-314 2.26708e-314 0.0Core.Array — Method
Array{T}(nothing, dims)
Array{T,N}(nothing, dims)Construct an N-dimensional Array containing elements of type T,
initialized with nothing entries. Element type T must be able
to hold these values, i.e. Nothing <: T.
Examples
julia> Array{Union{Nothing, String}}(nothing, 2)
2-element Vector{Union{Nothing, String}}:
nothing
nothing
julia> Array{Union{Nothing, Int}}(nothing, 2, 3)
2×3 Matrix{Union{Nothing, Int64}}:
nothing nothing nothing
nothing nothing nothingCore.Array — Method
Array{T}(missing, dims)
Array{T,N}(missing, dims)Construct an N-dimensional Array containing elements of type T,
initialized with missing entries. Element type T must be able
to hold these values, i.e. Missing <: T.
Examples
julia> Array{Union{Missing, String}}(missing, 2)
2-element Vector{Union{Missing, String}}:
missing
missing
julia> Array{Union{Missing, Int}}(missing, 2, 3)
2×3 Matrix{Union{Missing, Int64}}:
missing missing missing
missing missing missingCore.UndefInitializer — Type
UndefInitializerSingleton type used in array initialization, indicating the array-constructor-caller
would like an uninitialized array. See also undef,
an alias for UndefInitializer().
Examples
julia> Array{Float64, 1}(UndefInitializer(), 3)
3-element Vector{Float64}:
2.2752528595e-314
2.202942107e-314
2.275252907e-314Core.undef — Constant
undefAlias for UndefInitializer(), which constructs an instance of the singleton type
UndefInitializer, used in array initialization to indicate the
array-constructor-caller would like an uninitialized array.
Examples
julia> Array{Float64, 1}(undef, 3)
3-element Vector{Float64}:
2.2752528595e-314
2.202942107e-314
2.275252907e-314Base.Vector — Type
Vector{T} <: AbstractVector{T}One-dimensional dense array with elements of type T, often used to represent
a mathematical vector. Alias for Array{T,1}.
Base.Vector — Method
Vector{T}(undef, n)Construct an uninitialized Vector{T} of length n.
Examples
julia> Vector{Float64}(undef, 3)
3-element Vector{Float64}:
6.90966e-310
6.90966e-310
6.90966e-310Base.Vector — Method
Vector{T}(nothing, m)Construct a Vector{T} of length m, initialized with
nothing entries. Element type T must be able to hold
these values, i.e. Nothing <: T.
Examples
julia> Vector{Union{Nothing, String}}(nothing, 2)
2-element Vector{Union{Nothing, String}}:
nothing
nothingBase.Vector — Method
Vector{T}(missing, m)Construct a Vector{T} of length m, initialized with
missing entries. Element type T must be able to hold
these values, i.e. Missing <: T.
Examples
julia> Vector{Union{Missing, String}}(missing, 2)
2-element Vector{Union{Missing, String}}:
missing
missingBase.Matrix — Type
Matrix{T} <: AbstractMatrix{T}Two-dimensional dense array with elements of type T, often used to represent
a mathematical matrix. Alias for Array{T,2}.
See also fill, zeros, undef and similar
for creating matrices.
Base.Matrix — Method
Matrix{T}(undef, m, n)Construct an uninitialized Matrix{T} of size m×n.
Examples
julia> Matrix{Float64}(undef, 2, 3)
2×3 Matrix{Float64}:
2.36365e-314 2.28473e-314 5.0e-324
2.26704e-314 2.26711e-314 NaN
julia> similar(ans, Int32, 2, 2)
2×2 Matrix{Int32}:
490537216 1277177453
1 1936748399Base.Matrix — Method
Matrix{T}(nothing, m, n)Construct a Matrix{T} of size m×n, initialized with
nothing entries. Element type T must be able to hold
these values, i.e. Nothing <: T.
Examples
julia> Matrix{Union{Nothing, String}}(nothing, 2, 3)
2×3 Matrix{Union{Nothing, String}}:
nothing nothing nothing
nothing nothing nothingBase.Matrix — Method
Matrix{T}(missing, m, n)Construct a Matrix{T} of size m×n, initialized with
missing entries. Element type T must be able to hold
these values, i.e. Missing <: T.
Examples
julia> Matrix{Union{Missing, String}}(missing, 2, 3)
2×3 Matrix{Union{Missing, String}}:
missing missing missing
missing missing missingBase.VecOrMat — Type
VecOrMat{T}Union type of Vector{T} and Matrix{T} which allows functions to accept either a Matrix or a Vector.
Examples
julia> Vector{Float64} <: VecOrMat{Float64}
true
julia> Matrix{Float64} <: VecOrMat{Float64}
true
julia> Array{Float64, 3} <: VecOrMat{Float64}
falseCore.DenseArray — Type
DenseArray{T, N} <: AbstractArray{T,N}N-dimensional dense array with elements of type T.
The elements of a dense array are stored contiguously in memory.
Base.DenseVector — Type
DenseVector{T}One-dimensional DenseArray with elements of type T. Alias for DenseArray{T,1}.
Base.DenseMatrix — Type
DenseMatrix{T}Two-dimensional DenseArray with elements of type T. Alias for DenseArray{T,2}.
Base.DenseVecOrMat — Type
DenseVecOrMat{T}Union type of DenseVector{T} and DenseMatrix{T}.
Base.StridedArray — Type
StridedArray{T, N}A hard-coded Union of common array types that follow the strided array interface,
with elements of type T and N dimensions.
If A is a StridedArray, then its elements are stored in memory with offsets, which may
vary between dimensions but are constant within a dimension. For example, A could
have stride 2 in dimension 1, and stride 3 in dimension 2. Incrementing A along
dimension d jumps in memory by [stride(A, d)] slots. Strided arrays are
particularly important and useful because they can sometimes be passed directly
as pointers to foreign language libraries like BLAS.
Base.StridedVector — Type
StridedVector{T}One dimensional StridedArray with elements of type T.
Base.StridedMatrix — Type
StridedMatrix{T}Two dimensional StridedArray with elements of type T.
Base.StridedVecOrMat — Type
StridedVecOrMat{T}Union type of StridedVector and StridedMatrix with elements of type T.
Core.GenericMemory — Type
GenericMemory{kind::Symbol, T, addrspace=Core.CPU} <: DenseVector{T}Fixed-size DenseVector{T}.
kind can currently be either :not_atomic or :atomic. For details on what :atomic implies, see AtomicMemory
addrspace can currently only be set to Core.CPU. It is designed to permit extension by other systems such as GPUs, which might define values such as:
module CUDA
const Generic = bitcast(Core.AddrSpace{CUDA}, 0)
const Global = bitcast(Core.AddrSpace{CUDA}, 1)
endThe exact semantics of these other addrspaces is defined by the specific backend, but will error if the user is attempting to access these on the CPU.
Core.Memory — Type
Memory{T} == GenericMemory{:not_atomic, T, Core.CPU}Fixed-size DenseVector{T}.
Core.Memory — Method
Memory{T}(undef, n)Construct an uninitialized Memory{T} of length n. All Memory
objects of length 0 might alias, since there is no reachable mutable content
from them.
Examples
julia> Memory{Float64}(undef, 3)
3-element Memory{Float64}:
6.90966e-310
6.90966e-310
6.90966e-310Core.memoryref — Function
memoryref(::GenericMemory, index::Integer)
memoryref(::GenericMemoryRef, index::Integer)Construct a GenericMemoryRef from a memory object and an offset index (1-based) which
can also be negative. This always returns an inbounds object, and will throw an
error if that is not possible (because the index would result in a shift
out-of-bounds of the underlying memory).
memoryref(::GenericMemory)Construct a GenericMemoryRef from a memory object. This does not fail, but the
resulting memory will point out-of-bounds if and only if the memory is empty.
Base.memoryindex — Function
memoryindex(ref::GenericMemoryRef)::IntGet the 1-based index of ref in its GenericMemory.
Examples
julia> mem = Memory{String}(undef, 10);
julia> ref = Base.memoryindex(memoryref(mem, 3))
3
julia> Base.memoryindex(memoryref(Memory{Nothing}(undef, 10), 8))
8Base.Slices — Type
Slices{P,SM,AX,S,N} <: AbstractSlices{S,N}An AbstractArray of slices into a parent array over specified dimension(s),
returning views that select all the data from the other dimension(s).
These should typically be constructed by eachslice, eachcol or
eachrow.
parent(s::Slices) will return the parent array.
Base.RowSlices — Type
RowSlices{M,AX,S}A special case of Slices that is a vector of row slices of a matrix, as
constructed by eachrow.
parent can be used to get the underlying matrix.
Base.ColumnSlices — Type
ColumnSlices{M,AX,S}A special case of Slices that is a vector of column slices of a matrix, as
constructed by eachcol.
parent can be used to get the underlying matrix.
Base.getindex — Method
getindex(type[, elements...])Construct a 1-d array of the specified type. This is usually called with the syntax
Type[]. Element values can be specified using Type[a,b,c,...].
Examples
julia> Int8[1, 2, 3]
3-element Vector{Int8}:
1
2
3
julia> getindex(Int8, 1, 2, 3)
3-element Vector{Int8}:
1
2
3Base.zeros — Function
zeros([T=Float64,] dims::Tuple)
zeros([T=Float64,] dims...)Create an Array, with element type T, of all zeros with size specified by dims.
See also fill, ones, zero.
Examples
julia> zeros(1)
1-element Vector{Float64}:
0.0
julia> zeros(Int8, 2, 3)
2×3 Matrix{Int8}:
0 0 0
0 0 0Base.ones — Function
ones([T=Float64,] dims::Tuple)
ones([T=Float64,] dims...)Create an Array, with element type T, of all ones with size specified by dims.
See also fill, zeros.
Examples
julia> ones(1,2)
1×2 Matrix{Float64}:
1.0 1.0
julia> ones(ComplexF64, 2, 3)
2×3 Matrix{ComplexF64}:
1.0+0.0im 1.0+0.0im 1.0+0.0im
1.0+0.0im 1.0+0.0im 1.0+0.0imBase.BitArray — Type
BitArray{N} <: AbstractArray{Bool, N}Space-efficient N-dimensional boolean array, using just one bit for each boolean value.
BitArrays pack up to 64 values into every 8 bytes, resulting in an 8x space efficiency
over Array{Bool, N} and allowing some operations to work on 64 values at once.
By default, Julia returns BitArrays from broadcasting operations
that generate boolean elements (including dotted-comparisons like .==) as well as from
the functions trues and falses.
Base.BitArray — Method
BitArray(undef, dims::Integer...)
BitArray{N}(undef, dims::NTuple{N,Int})Construct an undef BitArray with the given dimensions.
Behaves identically to the Array constructor. See undef.
Examples
julia> BitArray(undef, 2, 2)
2×2 BitMatrix:
0 0
0 0
julia> BitArray(undef, (3, 1))
3×1 BitMatrix:
0
0
0Base.BitArray — Method
BitArray(itr)Construct a BitArray generated by the given iterable object.
The shape is inferred from the itr object.
Examples
julia> BitArray([1 0; 0 1])
2×2 BitMatrix:
1 0
0 1
julia> BitArray(x+y == 3 for x = 1:2, y = 1:3)
2×3 BitMatrix:
0 1 0
1 0 0
julia> BitArray(x+y == 3 for x = 1:2 for y = 1:3)
6-element BitVector:
0
1
0
1
0
0Base.trues — Function
trues(dims)Create a BitArray with all values set to true.
Examples
julia> trues(2,3)
2×3 BitMatrix:
1 1 1
1 1 1Base.falses — Function
falses(dims)Create a BitArray with all values set to false.
Examples
julia> falses(2,3)
2×3 BitMatrix:
0 0 0
0 0 0Base.fill — Function
fill(value, dims::Tuple)
fill(value, dims...)Create an array of size dims with every location set to value.
For example, fill(1.0, (5,5)) returns a 5×5 array of floats,
with 1.0 in every location of the array.
The dimension lengths dims may be specified as either a tuple or a sequence of arguments.
An N-length tuple or N arguments following the value specify an N-dimensional
array. Thus, a common idiom for creating a zero-dimensional array with its only location
set to x is fill(x).
Every location of the returned array is set to (and is thus === to)
the value that was passed; this means that if the value is itself modified,
all elements of the filled array will reflect that modification because they're
still that very value. This is of no concern with fill(1.0, (5,5)) as the
value 1.0 is immutable and cannot itself be modified, but can be unexpected
with mutable values like — most commonly — arrays. For example, fill([], 3)
places the very same empty array in all three locations of the returned vector:
julia> v = fill([], 3)
3-element Vector{Vector{Any}}:
[]
[]
[]
julia> v[1] === v[2] === v[3]
true
julia> value = v[1]
Any[]
julia> push!(value, 867_5309)
1-element Vector{Any}:
8675309
julia> v
3-element Vector{Vector{Any}}:
[8675309]
[8675309]
[8675309]To create an array of many independent inner arrays, use a comprehension instead. This creates a new and distinct array on each iteration of the loop:
julia> v2 = [[] for _ in 1:3]
3-element Vector{Vector{Any}}:
[]
[]
[]
julia> v2[1] === v2[2] === v2[3]
false
julia> push!(v2[1], 8675309)
1-element Vector{Any}:
8675309
julia> v2
3-element Vector{Vector{Any}}:
[8675309]
[]
[]See also: fill!, zeros, ones, similar.
Examples
julia> fill(1.0, (2,3))
2×3 Matrix{Float64}:
1.0 1.0 1.0
1.0 1.0 1.0
julia> fill(42)
0-dimensional Array{Int64, 0}:
42
julia> A = fill(zeros(2), 2) # sets both elements to the same [0.0, 0.0] vector
2-element Vector{Vector{Float64}}:
[0.0, 0.0]
[0.0, 0.0]
julia> A[1][1] = 42; # modifies the filled value to be [42.0, 0.0]
julia> A # both A[1] and A[2] are the very same vector
2-element Vector{Vector{Float64}}:
[42.0, 0.0]
[42.0, 0.0]Base.fill! — Function
fill!(A, x)Fill array A with the value x. If x is an object reference, all elements will refer to
the same object. fill!(A, Foo()) will return A filled with the result of evaluating
Foo() once.
Examples
julia> A = zeros(2,3)
2×3 Matrix{Float64}:
0.0 0.0 0.0
0.0 0.0 0.0
julia> fill!(A, 2.)
2×3 Matrix{Float64}:
2.0 2.0 2.0
2.0 2.0 2.0
julia> a = [1, 1, 1]; A = fill!(Vector{Vector{Int}}(undef, 3), a); a[1] = 2; A
3-element Vector{Vector{Int64}}:
[2, 1, 1]
[2, 1, 1]
[2, 1, 1]
julia> x = 0; f() = (global x += 1; x); fill!(Vector{Int}(undef, 3), f())
3-element Vector{Int64}:
1
1
1Base.empty — Function
empty(a::AbstractDict, [index_type=keytype(a)], [value_type=valtype(a)])Create an empty AbstractDict container which can accept indices of type index_type and
values of type value_type. The second and third arguments are optional and default to the
input's keytype and valtype, respectively. (If only one of the two types is specified,
it is assumed to be the value_type, and the index_type we default to keytype(a)).
Custom AbstractDict subtypes may choose which specific dictionary type is best suited to
return for the given index and value types, by specializing on the three-argument signature.
The default is to return an empty Dict.
empty(v::AbstractVector, [eltype])Create an empty vector similar to v, optionally changing the eltype.
See also: empty!, isempty, isassigned.
Examples
julia> empty([1.0, 2.0, 3.0])
Float64[]
julia> empty([1.0, 2.0, 3.0], String)
String[]empty(x::Tuple)Return an empty tuple, ().
Base.similar — Function
similar(storagetype, axes)Create an uninitialized mutable array analogous to that specified by
storagetype, but with axes specified by the last
argument.
Examples:
similar(Array{Int}, axes(A))creates an array that "acts like" an Array{Int} (and might indeed be
backed by one), but which is indexed identically to A. If A has
conventional indexing, this will be identical to
Array{Int}(undef, size(A)), but if A has unconventional indexing then the
indices of the result will match A.
similar(BitArray, (axes(A, 2),))would create a 1-dimensional logical array whose indices match those
of the columns of A.
similar(array, [element_type=eltype(array)], [dims=size(array)])Create an uninitialized mutable array with the given element type and size, based upon the
given source array. The second and third arguments are both optional, defaulting to the
given array's eltype and size. The dimensions may be specified either as a single tuple
argument or as a series of integer arguments.
Custom AbstractArray subtypes may choose which specific array type is best-suited to return
for the given element type and dimensionality. If they do not specialize this method, the
default is an Array{element_type}(undef, dims...).
For example, similar(1:10, 1, 4) returns an uninitialized Array{Int,2} since ranges are
neither mutable nor support 2 dimensions:
julia> similar(1:10, 1, 4)
1×4 Matrix{Int64}:
4419743872 4374413872 4419743888 0Conversely, similar(trues(10,10), 2) returns an uninitialized BitVector with two
elements since BitArrays are both mutable and can support 1-dimensional arrays:
julia> similar(trues(10,10), 2)
2-element BitVector:
0
0Since BitArrays can only store elements of type Bool, however, if you request a
different element type it will create a regular Array instead:
julia> similar(falses(10), Float64, 2, 4)
2×4 Matrix{Float64}:
2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314
2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314See also: undef, isassigned.
similar(A::AbstractSparseMatrixCSC{Tv,Ti}, [::Type{TvNew}, ::Type{TiNew}, m::Integer, n::Integer]) where {Tv,Ti}Create an uninitialized mutable array with the given element type,
index type, and size, based upon the given source
SparseMatrixCSC. The new sparse matrix maintains the structure of
the original sparse matrix, except in the case where dimensions of the
output matrix are different from the output.
The output matrix has zeros in the same locations as the input, but uninitialized values for the nonzero locations.
Basic functions
Base.ndims — Function
ndims(A::AbstractArray)::IntegerReturn the number of dimensions of A.
Examples
julia> A = fill(1, (3,4,5));
julia> ndims(A)
3Base.size — Function
size(A::AbstractArray, [dim])Return a tuple containing the dimensions of A. Optionally you can specify a
dimension to just get the length of that dimension.
Note that size may not be defined for arrays with non-standard indices, in which case axes
may be useful. See the manual chapter on arrays with custom indices.
See also: length, ndims, eachindex, sizeof.
Examples
julia> A = fill(1, (2,3,4));
julia> size(A)
(2, 3, 4)
julia> size(A, 2)
3Base.axes — Method
axes(A, d)Return the valid range of indices for array A along dimension d.
See also size, and the manual chapter on arrays with custom indices.
Examples
julia> A = fill(1, (5,6,7));
julia> axes(A, 2)
Base.OneTo(6)
julia> axes(A, 4) == 1:1 # all dimensions d > ndims(A) have size 1
trueUsage note
Each of the indices has to be an AbstractUnitRange{<:Integer}, but at the same time can be
a type that uses custom indices. So, for example, if you need a subset, use generalized
indexing constructs like begin/end or firstindex/lastindex:
ix = axes(v, 1)
ix[2:end] # will work for eg Vector, but may fail in general
ix[(begin+1):end] # works for generalized indexesBase.length — Method
length(A::AbstractArray)Return the number of elements in the array, defaults to prod(size(A)).
Examples
julia> length([1, 2, 3, 4])
4
julia> length([1 2; 3 4])
4Base.keys — Method
keys(a::AbstractArray)Return an efficient array describing all valid indices for a arranged in the shape of a itself.
The keys of 1-dimensional arrays (vectors) are integers, whereas all other N-dimensional
arrays use CartesianIndex to describe their locations. Often the special array
types LinearIndices and CartesianIndices are used to efficiently
represent these arrays of integers and CartesianIndexes, respectively.
Note that the keys of an array might not be the most efficient index type; for maximum
performance use eachindex instead.
Examples
julia> keys([4, 5, 6])
3-element LinearIndices{1, Tuple{Base.OneTo{Int64}}}:
1
2
3
julia> keys([4 5; 6 7])
CartesianIndices((2, 2))Base.eachindex — Function
eachindex(A...)
eachindex(::IndexStyle, A::AbstractArray...)Create an iterable object for visiting each index of an AbstractArray A in an efficient
manner. For array types that have opted into fast linear indexing (like Array), this is
simply the range 1:length(A) if they use 1-based indexing.
For array types that have not opted into fast linear indexing, a specialized Cartesian
range is typically returned to efficiently index into the array with indices specified
for every dimension.
In general eachindex accepts arbitrary iterables, including strings and dictionaries, and returns
an iterator object supporting arbitrary index types (e.g. unevenly spaced or non-integer indices).
If A is AbstractArray it is possible to explicitly specify the style of the indices that
should be returned by eachindex by passing a value having IndexStyle type as its first argument
(typically IndexLinear() if linear indices are required or IndexCartesian() if Cartesian
range is wanted).
If you supply more than one AbstractArray argument, eachindex will create an
iterable object that is fast for all arguments (typically a UnitRange
if all inputs have fast linear indexing, a CartesianIndices otherwise).
If the arrays have different sizes and/or dimensionalities, a DimensionMismatch exception
will be thrown.
See also pairs(A) to iterate over indices and values together,
and axes(A, 2) for valid indices along one dimension.
Examples
julia> A = [10 20; 30 40];
julia> for i in eachindex(A) # linear indexing
println("A[", i, "] == ", A[i])
end
A[1] == 10
A[2] == 30
A[3] == 20
A[4] == 40
julia> for i in eachindex(view(A, 1:2, 1:1)) # Cartesian indexing
println(i)
end
CartesianIndex(1, 1)
CartesianIndex(2, 1)Base.IndexStyle — Type
IndexStyle(A)
IndexStyle(typeof(A))IndexStyle specifies the "native indexing style" for array A. When
you define a new AbstractArray type, you can choose to implement
either linear indexing (with IndexLinear) or cartesian indexing.
If you decide to only implement linear indexing, then you must set this trait for your array
type:
Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()The default is IndexCartesian().
Julia's internal indexing machinery will automatically (and invisibly) recompute all indexing operations into the preferred style. This allows users to access elements of your array using any indexing style, even when explicit methods have not been provided.
If you define both styles of indexing for your AbstractArray, this
trait can be used to select the most performant indexing style. Some
methods check this trait on their inputs, and dispatch to different
algorithms depending on the most efficient access pattern. In
particular, eachindex creates an iterator whose type depends
on the setting of this trait.
Base.IndexLinear — Type
IndexLinear()Subtype of IndexStyle used to describe arrays which
are optimally indexed by one linear index.
A linear indexing style uses one integer index to describe the position in the array
(even if it's a multidimensional array) and column-major
ordering is used to efficiently access the elements. This means that
requesting eachindex from an array that is IndexLinear will return
a simple one-dimensional range, even if it is multidimensional.
A custom array that reports its IndexStyle as IndexLinear only needs
to implement indexing (and indexed assignment) with a single Int index;
all other indexing expressions — including multidimensional accesses — will
be recomputed to the linear index. For example, if A were a 2×3 custom
matrix with linear indexing, and we referenced A[1, 3], this would be
recomputed to the equivalent linear index and call A[5] since 1 + 2*(3 - 1) = 5.
See also IndexCartesian.
Base.IndexCartesian — Type
IndexCartesian()Subtype of IndexStyle used to describe arrays which
are optimally indexed by a Cartesian index. This is the default
for new custom AbstractArray subtypes.
A Cartesian indexing style uses multiple integer indices to describe the position in
a multidimensional array, with exactly one index per dimension. This means that
requesting eachindex from an array that is IndexCartesian will return
a range of CartesianIndices.
A N-dimensional custom array that reports its IndexStyle as IndexCartesian needs
to implement indexing (and indexed assignment) with exactly N Int indices;
all other indexing expressions — including linear indexing — will
be recomputed to the equivalent Cartesian location. For example, if A were a 2×3 custom
matrix with cartesian indexing, and we referenced A[5], this would be
recomputed to the equivalent Cartesian index and call A[1, 3] since 5 = 1 + 2*(3 - 1).
It is significantly more expensive to compute Cartesian indices from a linear index than it is
to go the other way. The former operation requires division — a very costly operation — whereas
the latter only uses multiplication and addition and is essentially free. This asymmetry means it
is far more costly to use linear indexing with an IndexCartesian array than it is to use
Cartesian indexing with an IndexLinear array.
See also IndexLinear.
Base.conj! — Function
conj!(A)Transform an array to its complex conjugate in-place.
See also conj.
Examples
julia> A = [1+im 2-im; 2+2im 3+im]
2×2 Matrix{Complex{Int64}}:
1+1im 2-1im
2+2im 3+1im
julia> conj!(A);
julia> A
2×2 Matrix{Complex{Int64}}:
1-1im 2+1im
2-2im 3-1imBase.stride — Function
stride(A, k::Integer)Return the distance in memory (in number of elements) between adjacent elements in dimension k.
See also: strides.
Examples
julia> A = fill(1, (3,4,5));
julia> stride(A,2)
3
julia> stride(A,3)
12Base.strides — Function
strides(A)Return a tuple of the memory strides in each dimension.
See also: stride.
Examples
julia> A = fill(1, (3,4,5));
julia> strides(A)
(1, 3, 12)Broadcast and vectorization
See also the dot syntax for vectorizing functions;
for example, f.(args...) implicitly calls broadcast(f, args...).
Rather than relying on "vectorized" methods of functions like sin
to operate on arrays, you should use sin.(a) to vectorize via broadcast.
Base.Broadcast.broadcast — Function
broadcast(f, As...)Broadcast the function f over the arrays, tuples, collections, Refs and/or scalars As.
Broadcasting applies the function f over the elements of the container arguments and the
scalars themselves in As. Singleton and missing dimensions are expanded to match the
extents of the other arguments by virtually repeating the value. By default, only a limited
number of types are considered scalars, including Numbers, Strings, Symbols, Types,
Functions and some common singletons like missing and nothing. All other arguments are
iterated over or indexed into elementwise.
The resulting container type is established by the following rules:
If all the arguments are scalars or zero-dimensional arrays, it returns an unwrapped scalar.
If at least one argument is a tuple and all others are scalars or zero-dimensional arrays, it returns a tuple.
All other combinations of arguments default to returning an
Array, but custom container types can define their own implementation and promotion-like rules to customize the result when they appear as arguments.The element type is determined in the same manner as in
collect.
A special syntax exists for broadcasting: f.(args...) is equivalent to
broadcast(f, args...), and nested f.(g.(args...)) calls are fused into a
single broadcast loop.
Examples
julia> A = [1, 2, 3, 4, 5]
5-element Vector{Int64}:
1
2
3
4
5
julia> B = [1 2; 3 4; 5 6; 7 8; 9 10]
5×2 Matrix{Int64}:
1 2
3 4
5 6
7 8
9 10
julia> broadcast(+, A, B)
5×2 Matrix{Int64}:
2 3
5 6
8 9
11 12
14 15
julia> parse.(Int, ["1", "2"])
2-element Vector{Int64}:
1
2
julia> abs.((1, -2))
(1, 2)
julia> broadcast(+, 1.0, (0, -2.0))
(1.0, -1.0)
julia> (+).([[0,2], [1,3]], Ref{Vector{Int}}([1,-1]))
2-element Vector{Vector{Int64}}:
[1, 1]
[2, 2]
julia> string.(("one","two","three","four"), ": ", 1:4)
4-element Vector{String}:
"one: 1"
"two: 2"
"three: 3"
"four: 4"
Base.Broadcast.broadcast! — Function
broadcast!(f, dest, As...)Like broadcast, but store the result of
broadcast(f, As...) in the dest array.
Note that dest is only used to store the result, and does not supply
arguments to f unless it is also listed in the As,
as in broadcast!(f, A, A, B) to perform A[:] = broadcast(f, A, B).
Examples
julia> A = [1.0; 0.0]; B = [0.0; 0.0];
julia> broadcast!(+, B, A, (0, -2.0));
julia> B
2-element Vector{Float64}:
1.0
-2.0
julia> A
2-element Vector{Float64}:
1.0
0.0
julia> broadcast!(+, A, A, (0, -2.0));
julia> A
2-element Vector{Float64}:
1.0
-2.0Base.Broadcast.@__dot__ — Macro
@. exprConvert every function call or operator in expr into a "dot call"
(e.g. convert f(x) to f.(x)), and convert every assignment in expr
to a "dot assignment" (e.g. convert += to .+=).
If you want to avoid adding dots for selected function calls in
expr, splice those function calls in with $. For example,
@. sqrt(abs($sort(x))) is equivalent to sqrt.(abs.(sort(x)))
(no dot for sort).
(@. is equivalent to a call to @__dot__.)
Examples
julia> x = 1.0:3.0; y = similar(x);
julia> @. y = x + 3 * sin(x)
3-element Vector{Float64}:
3.5244129544236893
4.727892280477045
3.4233600241796016Base.Broadcast.BroadcastFunction — Type
BroadcastFunction{F} <: FunctionRepresents the "dotted" version of an operator, which broadcasts the operator over its
arguments, so BroadcastFunction(op) is functionally equivalent to (x...) -> (op).(x...).
Can be created by just passing an operator preceded by a dot to a higher-order function.
Examples
julia> a = [[1 3; 2 4], [5 7; 6 8]];
julia> b = [[9 11; 10 12], [13 15; 14 16]];
julia> map(.*, a, b)
2-element Vector{Matrix{Int64}}:
[9 33; 20 48]
[65 105; 84 128]
julia> Base.BroadcastFunction(+)(a, b) == a .+ b
trueFor specializing broadcast on custom types, see
Base.Broadcast.BroadcastStyle — Type
BroadcastStyle is an abstract type and trait-function used to determine behavior of
objects under broadcasting. BroadcastStyle(typeof(x)) returns the style associated
with x. To customize the broadcasting behavior of a type, one can declare a style
by defining a type/method pair
struct MyContainerStyle <: BroadcastStyle end
Base.BroadcastStyle(::Type{<:MyContainer}) = MyContainerStyle()One then writes method(s) (at least similar) operating on
Broadcasted{MyContainerStyle}. There are also several pre-defined subtypes of BroadcastStyle
that you may be able to leverage; see the
Interfaces chapter for more information.
Base.Broadcast.AbstractArrayStyle — Type
Broadcast.AbstractArrayStyle{N} <: BroadcastStyle is the abstract supertype for any style
associated with an AbstractArray type.
The N parameter is the dimensionality, which can be handy for AbstractArray types
that only support specific dimensionalities:
struct SparseMatrixStyle <: Broadcast.AbstractArrayStyle{2} end
Base.BroadcastStyle(::Type{<:SparseMatrixCSC}) = SparseMatrixStyle()For AbstractArray types that support arbitrary dimensionality, N can be set to Any:
struct MyArrayStyle <: Broadcast.AbstractArrayStyle{Any} end
Base.BroadcastStyle(::Type{<:MyArray}) = MyArrayStyle()In cases where you want to be able to mix multiple AbstractArrayStyles and keep track
of dimensionality, your style needs to support a Val constructor:
struct MyArrayStyleDim{N} <: Broadcast.AbstractArrayStyle{N} end
(::Type{<:MyArrayStyleDim})(::Val{N}) where N = MyArrayStyleDim{N}()Note that if two or more AbstractArrayStyle subtypes conflict, broadcasting machinery
will fall back to producing Arrays. If this is undesirable, you may need to
define binary BroadcastStyle rules to control the output type.
See also Broadcast.DefaultArrayStyle.
Base.Broadcast.ArrayStyle — Type
Broadcast.ArrayStyle{MyArrayType}() is a BroadcastStyle indicating that an object
behaves as an array for broadcasting. It presents a simple way to construct
Broadcast.AbstractArrayStyles for specific AbstractArray container types.
Broadcast styles created this way lose track of dimensionality; if keeping track is important
for your type, you should create your own custom Broadcast.AbstractArrayStyle.
Base.Broadcast.DefaultArrayStyle — Type
Broadcast.DefaultArrayStyle{N}() is a BroadcastStyle indicating that an object
behaves as an N-dimensional array for broadcasting. Specifically, DefaultArrayStyle is
used for any
AbstractArray type that hasn't defined a specialized style, and in the absence of
overrides from other broadcast arguments the resulting output type is Array.
When there are multiple inputs to broadcast, DefaultArrayStyle "loses" to any other Broadcast.ArrayStyle.
Base.Broadcast.broadcastable — Function
Broadcast.broadcastable(x)Return either x or an object like x such that it supports axes, indexing, and its type supports ndims.
If x supports iteration, the returned value should have the same axes and indexing
behaviors as collect(x).
If x is not an AbstractArray but it supports axes, indexing, and its type supports
ndims, then broadcastable(::typeof(x)) may be implemented to just return itself.
Further, if x defines its own BroadcastStyle, then it must define its
broadcastable method to return itself for the custom style to have any effect.
Examples
julia> Broadcast.broadcastable([1,2,3]) # like `identity` since arrays already support axes and indexing
3-element Vector{Int64}:
1
2
3
julia> Broadcast.broadcastable(Int) # Types don't support axes, indexing, or iteration but are commonly used as scalars
Base.RefValue{Type{Int64}}(Int64)
julia> Broadcast.broadcastable("hello") # Strings break convention of matching iteration and act like a scalar instead
Base.RefValue{String}("hello")Base.Broadcast.combine_axes — Function
combine_axes(As...)::TupleDetermine the result axes for broadcasting across all values in As.
julia> Broadcast.combine_axes([1], [1 2; 3 4; 5 6])
(Base.OneTo(3), Base.OneTo(2))
julia> Broadcast.combine_axes(1, 1, 1)
()Base.Broadcast.combine_styles — Function
combine_styles(cs...)::BroadcastStyleDecides which BroadcastStyle to use for any number of value arguments.
Uses BroadcastStyle to get the style for each argument, and uses
result_style to combine styles.
Examples
julia> Broadcast.combine_styles([1], [1 2; 3 4])
Base.Broadcast.DefaultArrayStyle{2}()Base.Broadcast.result_style — Function
result_style(s1::BroadcastStyle[, s2::BroadcastStyle])::BroadcastStyleTakes one or two BroadcastStyles and combines them using BroadcastStyle to
determine a common BroadcastStyle.
Examples
julia> Broadcast.result_style(Broadcast.DefaultArrayStyle{0}(), Broadcast.DefaultArrayStyle{3}())
Base.Broadcast.DefaultArrayStyle{3}()
julia> Broadcast.result_style(Broadcast.Unknown(), Broadcast.DefaultArrayStyle{1}())
Base.Broadcast.DefaultArrayStyle{1}()Indexing and assignment
Base.getindex — Method
getindex(A, inds...)Return a subset of array A as selected by the indices inds.
Each index may be any supported index type, such
as an Integer, CartesianIndex, range, or array of supported indices.
A : may be used to select all elements along a specific dimension, and a boolean array (e.g. an Array{Bool} or a BitArray) may be used to filter for elements where the corresponding index is true.
When inds selects multiple elements, this function returns a newly
allocated array. To index multiple elements without making a copy,
use view instead.
See the manual section on array indexing for details.
Examples
julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> getindex(A, 1)
1
julia> getindex(A, [2, 1])
2-element Vector{Int64}:
3
1
julia> getindex(A, 2:4)
3-element Vector{Int64}:
3
2
4
julia> getindex(A, 2, 1)
3
julia> getindex(A, CartesianIndex(2, 1))
3
julia> getindex(A, :, 2)
2-element Vector{Int64}:
2
4
julia> getindex(A, 2, :)
2-element Vector{Int64}:
3
4
julia> getindex(A, A .> 2)
2-element Vector{Int64}:
3
4Base.setindex! — Method
setindex!(A, X, inds...)
A[inds...] = XStore values from array X within some subset of A as specified by inds.
The syntax A[inds...] = X is equivalent to (setindex!(A, X, inds...); X).
Examples
julia> A = zeros(2,2);
julia> setindex!(A, [10, 20], [1, 2]);
julia> A[[3, 4]] = [30, 40];
julia> A
2×2 Matrix{Float64}:
10.0 30.0
20.0 40.0Base.nextind — Function
nextind(A, i)Return the index after i in A. The returned index is often equivalent to
i + 1 for an integer i. This function can be useful for generic code.
The returned index might be out of bounds. Consider using
checkbounds.
See also: prevind.
Examples
julia> x = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> nextind(x, 1) # valid result
2
julia> nextind(x, 4) # invalid result
5
julia> nextind(x, CartesianIndex(1, 1)) # valid result
CartesianIndex(2, 1)
julia> nextind(x, CartesianIndex(2, 2)) # invalid result
CartesianIndex(1, 3)Base.prevind — Function
prevind(A, i)Return the index before i in A. The returned index is often equivalent to
i - 1 for an integer i. This function can be useful for generic code.
The returned index might be out of bounds. Consider using
checkbounds.
See also: nextind.
Examples
julia> x = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> prevind(x, 4) # valid result
3
julia> prevind(x, 1) # invalid result
0
julia> prevind(x, CartesianIndex(2, 2)) # valid result
CartesianIndex(1, 2)
julia> prevind(x, CartesianIndex(1, 1)) # invalid result
CartesianIndex(2, 0)Base.copyto! — Method
copyto!(dest, Rdest::CartesianIndices, src, Rsrc::CartesianIndices) -> destCopy the block of src in the range of Rsrc to the block of dest
in the range of Rdest. The sizes of the two regions must match.
Examples
julia> A = zeros(5, 5);
julia> B = [1 2; 3 4];
julia> Ainds = CartesianIndices((2:3, 2:3));
julia> Binds = CartesianIndices(B);
julia> copyto!(A, Ainds, B, Binds)
5×5 Matrix{Float64}:
0.0 0.0 0.0 0.0 0.0
0.0 1.0 2.0 0.0 0.0
0.0 3.0 4.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0Base.copy! — Function
copy!(dst, src) -> dstIn-place copy of src into dst, discarding any pre-existing
elements in dst.
If dst and src are of the same type, dst == src should hold after
the call. If dst and src are vector types, they must have equal
offset. If dst and src are multidimensional arrays, they must have
equal axes.
See also copyto!.
copy!(dest::AbstractMatrix, src::UniformScaling)Copies a UniformScaling onto a matrix.
Base.isassigned — Function
isassigned(array, i)::BoolTest whether the given array has a value associated with index i. Return false
if the index is out of bounds, or has an undefined reference.
Examples
julia> isassigned(rand(3, 3), 5)
true
julia> isassigned(rand(3, 3), 3 * 3 + 1)
false
julia> mutable struct Foo end
julia> v = similar(rand(3), Foo)
3-element Vector{Foo}:
#undef
#undef
#undef
julia> isassigned(v, 1)
falseBase.Colon — Type
Colon()Colons (:) are used to signify indexing entire objects or dimensions at once.
Very few operations are defined on Colons directly; instead they are converted
by to_indices to an internal vector type (Base.Slice) to represent the
collection of indices they span before being used.
The singleton instance of Colon is also a function used to construct ranges;
see :.
Base.IteratorsMD.CartesianIndex — Type
CartesianIndex(i, j, k...) -> I
CartesianIndex((i, j, k...)) -> ICreate a multidimensional index I, which can be used for
indexing a multidimensional array A. In particular, A[I] is
equivalent to A[i,j,k...]. One can freely mix integer and
CartesianIndex indices; for example, A[Ipre, i, Ipost] (where
Ipre and Ipost are CartesianIndex indices and i is an
Int) can be a useful expression when writing algorithms that
work along a single dimension of an array of arbitrary
dimensionality.
A CartesianIndex is sometimes produced by eachindex, and
always when iterating with an explicit CartesianIndices.
An I::CartesianIndex is treated as a "scalar" (not a container)
for broadcast. In order to iterate over the components of a
CartesianIndex, convert it to a tuple with Tuple(I).
Examples
julia> A = reshape(Vector(1:16), (2, 2, 2, 2))
2×2×2×2 Array{Int64, 4}:
[:, :, 1, 1] =
1 3
2 4
[:, :, 2, 1] =
5 7
6 8
[:, :, 1, 2] =
9 11
10 12
[:, :, 2, 2] =
13 15
14 16
julia> A[CartesianIndex((1, 1, 1, 1))]
1
julia> A[CartesianIndex((1, 1, 1, 2))]
9
julia> A[CartesianIndex((1, 1, 2, 1))]
5Base.IteratorsMD.CartesianIndices — Type
CartesianIndices(sz::Dims) -> R
CartesianIndices((istart:[istep:]istop, jstart:[jstep:]jstop, ...)) -> RDefine a region R spanning a multidimensional rectangular range
of integer indices. These are most commonly encountered in the
context of iteration, where for I in R ... end will return
CartesianIndex indices I equivalent to the nested loops
for j = jstart:jstep:jstop
for i = istart:istep:istop
...
end
endConsequently these can be useful for writing algorithms that work in arbitrary dimensions.
CartesianIndices(A::AbstractArray) -> RAs a convenience, constructing a CartesianIndices from an array makes a
range of its indices.
The step range method CartesianIndices((istart:istep:istop, jstart:[jstep:]jstop, ...))
requires at least Julia 1.6.
Examples
julia> foreach(println, CartesianIndices((2, 2, 2)))
CartesianIndex(1, 1, 1)
CartesianIndex(2, 1, 1)
CartesianIndex(1, 2, 1)
CartesianIndex(2, 2, 1)
CartesianIndex(1, 1, 2)
CartesianIndex(2, 1, 2)
CartesianIndex(1, 2, 2)
CartesianIndex(2, 2, 2)
julia> CartesianIndices(fill(1, (2,3)))
CartesianIndices((2, 3))Conversion between linear and cartesian indices
Linear index to cartesian index conversion exploits the fact that a
CartesianIndices is an AbstractArray and can be indexed linearly:
julia> cartesian = CartesianIndices((1:3, 1:2))
CartesianIndices((1:3, 1:2))
julia> cartesian[4]
CartesianIndex(1, 2)
julia> cartesian = CartesianIndices((1:2:5, 1:2))
CartesianIndices((1:2:5, 1:2))
julia> cartesian[2, 2]
CartesianIndex(3, 2)Broadcasting
CartesianIndices support broadcasting arithmetic (+ and -) with a CartesianIndex.
julia> CIs = CartesianIndices((2:3, 5:6))
CartesianIndices((2:3, 5:6))
julia> CI = CartesianIndex(3, 4)
CartesianIndex(3, 4)
julia> CIs .+ CI
CartesianIndices((5:6, 9:10))For cartesian to linear index conversion, see LinearIndices.
Base.Dims — Type
Dims{N}An NTuple of N Ints used to represent the dimensions
of an AbstractArray.
Base.LinearIndices — Type
LinearIndices(A::AbstractArray)Return a LinearIndices array with the same shape and axes as A,
holding the linear index of each entry in A. Indexing this array with
cartesian indices allows mapping them to linear indices.
For arrays with conventional indexing (indices start at 1), or any multidimensional
array, linear indices range from 1 to length(A). However, for AbstractVectors
linear indices are axes(A, 1), and therefore do not start at 1 for vectors with
unconventional indexing.
Calling this function is the "safe" way to write algorithms that exploit linear indexing.
Examples
julia> A = fill(1, (5,6,7));
julia> b = LinearIndices(A);
julia> extrema(b)
(1, 210)LinearIndices(inds::CartesianIndices) -> R
LinearIndices(sz::Dims) -> R
LinearIndices((istart:istop, jstart:jstop, ...)) -> RReturn a LinearIndices array with the specified shape or axes.
Examples
The main purpose of this constructor is intuitive conversion from cartesian to linear indexing:
julia> linear = LinearIndices((1:3, 1:2))
3×2 LinearIndices{2, Tuple{UnitRange{Int64}, UnitRange{Int64}}}:
1 4
2 5
3 6
julia> linear[1,2]
4Base.to_indices — Function
to_indices(A, I::Tuple)Convert the tuple I to a tuple of indices for use in indexing into array A.
The returned tuple must only contain either Ints or AbstractArrays of
scalar indices that are supported by array A. It will error upon encountering
a novel index type that it does not know how to process.
For simple index types, it defers to the unexported Base.to_index(A, i) to
process each index i. While this internal function is not intended to be
called directly, Base.to_index may be extended by custom array or index types
to provide custom indexing behaviors.
More complicated index types may require more context about the dimension into
which they index. To support those cases, to_indices(A, I) calls
to_indices(A, axes(A), I), which then recursively walks through both the
given tuple of indices and the dimensional indices of A in tandem. As such,
not all index types are guaranteed to propagate to Base.to_index.
Examples
julia> A = zeros(1,2,3,4);
julia> to_indices(A, (1,1,2,2))
(1, 1, 2, 2)
julia> to_indices(A, (1,1,2,20)) # no bounds checking
(1, 1, 2, 20)
julia> to_indices(A, (CartesianIndex((1,)), 2, CartesianIndex((3,4)))) # exotic index
(1, 2, 3, 4)
julia> to_indices(A, ([1,1], 1:2, 3, 4))
([1, 1], 1:2, 3, 4)
julia> to_indices(A, (1,2)) # no shape checking
(1, 2)Base.checkbounds — Function
checkbounds(A, I...)Throw an error if the specified indices I are not in bounds for the given array A.
checkbounds(Bool, A, I...)Return true if the specified indices I are in bounds for the given
array A. Subtypes of AbstractArray should specialize this method
if they need to provide custom bounds checking behaviors; however, in
many cases one can rely on A's indices and checkindex.
See also checkindex.
Examples
julia> A = rand(3, 3);
julia> checkbounds(Bool, A, 2)
true
julia> checkbounds(Bool, A, 3, 4)
false
julia> checkbounds(Bool, A, 1:3)
true
julia> checkbounds(Bool, A, 1:3, 2:4)
falseBase.checkindex — Function
checkindex(Bool, inds::AbstractUnitRange, index)Return true if the given index is within the bounds of
inds. Custom types that would like to behave as indices for all
arrays can extend this method in order to provide a specialized bounds
checking implementation.
See also checkbounds.
Examples
julia> checkindex(Bool, 1:20, 8)
true
julia> checkindex(Bool, 1:20, 21)
falseBase.elsize — Function
elsize(type)Compute the memory stride in bytes between consecutive elements of eltype
stored inside the given type, if the array elements are stored densely with a
uniform linear stride.
Examples
julia> Base.elsize(rand(Float32, 10))
4While most code can be written in an index-agnostic manner (see, e.g., eachindex), it can sometimes be useful to explicitly check for offset axes:
Base.require_one_based_indexing — Function
require_one_based_indexing(A::AbstractArray)
require_one_based_indexing(A,B...)Throw an ArgumentError if the indices of any argument start with something other than 1 along any axis.
See also has_offset_axes.
Base.has_offset_axes — Function
has_offset_axes(A)
has_offset_axes(A, B, ...)Return true if the indices of A start with something other than 1 along any axis.
If multiple arguments are passed, equivalent to has_offset_axes(A) || has_offset_axes(B) || ....
See also require_one_based_indexing.
Views (SubArrays and other view types)
A “view” is a data structure that acts like an array (it is a subtype of AbstractArray), but the underlying data is actually
part of another array.
For example, if x is an array and v = @view x[1:10], then v acts like a 10-element array, but its data is actually
accessing the first 10 elements of x. Writing to a view, e.g. v[3] = 2, writes directly to the underlying array x
(in this case modifying x[3]).
Slicing operations like x[1:10] create a copy by default in Julia. @view x[1:10] changes it to make a view. The
@views macro can be used on a whole block of code (e.g. @views function foo() .... end or @views begin ... end)
to change all the slicing operations in that block to use views. Sometimes making a copy of the data is faster and
sometimes using a view is faster, as described in the performance tips.
Base.view — Function
view(A, inds...)Like getindex, but returns a lightweight array that lazily references
(or is effectively a view into) the parent array A at the given index or indices
inds instead of eagerly extracting elements or constructing a copied subset.
Calling getindex or setindex! on the returned value
(often a SubArray) computes the indices to access or modify the
parent array on the fly. The behavior is undefined if the shape of the parent array is
changed after view is called because there is no bound check for the parent array; e.g.,
it may cause a segmentation fault. It is likewise undefined behavior to modify the inds
array(s) after construction of the view.
Some immutable parent arrays (like ranges) may choose to simply
recompute a new array in some circumstances instead of returning
a SubArray if doing so is efficient and provides compatible semantics.
Examples
julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> b = view(A, :, 1)
2-element view(::Matrix{Int64}, :, 1) with eltype Int64:
1
3
julia> fill!(b, 0)
2-element view(::Matrix{Int64}, :, 1) with eltype Int64:
0
0
julia> A # Note A has changed even though we modified b
2×2 Matrix{Int64}:
0 2
0 4
julia> view(2:5, 2:3) # returns a range as type is immutable
3:4Base.@view — Macro
@view A[inds...]Transform the indexing expression A[inds...] into the equivalent view call.
This can only be applied directly to a single indexing expression and is particularly
helpful for expressions that include the special begin or end indexing syntaxes
like A[begin, 2:end-1] (as those are not supported by the normal view
function).
Note that @view cannot be used as the target of a regular assignment (e.g.,
@view(A[1, 2:end]) = ...), nor would the un-decorated
indexed assignment (A[1, 2:end] = ...)
or broadcasted indexed assignment (A[1, 2:end] .= ...) make a copy. It can be useful,
however, for updating broadcasted assignments like @view(A[1, 2:end]) .+= 1
because this is a simple syntax for @view(A[1, 2:end]) .= @view(A[1, 2:end]) + 1,
and the indexing expression on the right-hand side would otherwise make a
copy without the @view.
See also @views to switch an entire block of code to use views for non-scalar indexing.
Using begin in an indexing expression to refer to the first index requires at least
Julia 1.5.
Examples
julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> b = @view A[:, 1]
2-element view(::Matrix{Int64}, :, 1) with eltype Int64:
1
3
julia> fill!(b, 0)
2-element view(::Matrix{Int64}, :, 1) with eltype Int64:
0
0
julia> A
2×2 Matrix{Int64}:
0 2
0 4Base.@views — Macro
@views expressionConvert every array-slicing operation in the given expression
(which may be a begin/end block, loop, function, etc.)
to return a view. Scalar indices, non-array types, and
explicit getindex calls (as opposed to array[...]) are
unaffected.
Similarly, @views converts string slices into SubString views.
The @views macro only affects array[...] expressions
that appear explicitly in the given expression, not array slicing that
occurs in functions called by that code.
Using begin in an indexing expression to refer to the first index was implemented
in Julia 1.4, but was only supported by @views starting in Julia 1.5.
Examples
julia> A = zeros(3, 3);
julia> @views for row in 1:3
b = A[row, :] # b is a view, not a copy
b .= row # assign every element to the row index
end
julia> A
3×3 Matrix{Float64}:
1.0 1.0 1.0
2.0 2.0 2.0
3.0 3.0 3.0Base.parent — Function
parent(A)Return the underlying parent object of the view. This parent of objects of types SubArray, SubString, ReshapedArray
or LinearAlgebra.Transpose is what was passed as an argument to view, reshape, transpose, etc.
during object creation. If the input is not a wrapped object, return the input itself. If the input is
wrapped multiple times, only the outermost wrapper will be removed.
Examples
julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> V = view(A, 1:2, :)
2×2 view(::Matrix{Int64}, 1:2, :) with eltype Int64:
1 2
3 4
julia> parent(V)
2×2 Matrix{Int64}:
1 2
3 4Base.parentindices — Function
parentindices(A)Return the indices in the parent which correspond to the view A.
Examples
julia> A = [1 2; 3 4];
julia> V = view(A, 1, :)
2-element view(::Matrix{Int64}, 1, :) with eltype Int64:
1
2
julia> parentindices(V)
(1, Base.Slice(Base.OneTo(2)))Base.selectdim — Function
selectdim(A, d::Integer, i)Return a view of all the data of A where the index for dimension d equals i.
Equivalent to view(A,:,:,...,i,:,:,...) where i is in position d.
See also: eachslice.
Examples
julia> A = [1 2 3 4; 5 6 7 8]
2×4 Matrix{Int64}:
1 2 3 4
5 6 7 8
julia> selectdim(A, 2, 3)
2-element view(::Matrix{Int64}, :, 3) with eltype Int64:
3
7
julia> selectdim(A, 2, 3:4)
2×2 view(::Matrix{Int64}, :, 3:4) with eltype Int64:
3 4
7 8Base.reinterpret — Function
reinterpret(reshape, T, A::AbstractArray{S}) -> BChange the type-interpretation of A while consuming or adding a "channel dimension."
If sizeof(T) = n*sizeof(S) for n>1, A's first dimension must be
of size n and B lacks A's first dimension. Conversely, if sizeof(S) = n*sizeof(T) for n>1,
B gets a new first dimension of size n. The dimensionality is unchanged if sizeof(T) == sizeof(S).
Examples
julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> reinterpret(reshape, Complex{Int}, A) # the result is a vector
2-element reinterpret(reshape, Complex{Int64}, ::Matrix{Int64}) with eltype Complex{Int64}:
1 + 3im
2 + 4im
julia> a = [(1,2,3), (4,5,6)]
2-element Vector{Tuple{Int64, Int64, Int64}}:
(1, 2, 3)
(4, 5, 6)
julia> reinterpret(reshape, Int, a) # the result is a matrix
3×2 reinterpret(reshape, Int64, ::Vector{Tuple{Int64, Int64, Int64}}) with eltype Int64:
1 4
2 5
3 6reinterpret(T::DataType, A::AbstractArray)Construct a view of the array with the same binary data as the given
array, but with T as element type.
This function also works on "lazy" array whose elements are not computed until they are explicitly retrieved.
For instance, reinterpret on the range 1:6 works similarly as on the dense vector collect(1:6):
julia> reinterpret(Float32, UInt32[1 2 3 4 5])
1×5 reinterpret(Float32, ::Matrix{UInt32}):
1.0f-45 3.0f-45 4.0f-45 6.0f-45 7.0f-45
julia> reinterpret(Complex{Int}, 1:6)
3-element reinterpret(Complex{Int64}, ::UnitRange{Int64}):
1 + 2im
3 + 4im
5 + 6imIf the location of padding bits does not line up between T and eltype(A), the resulting array will be
read-only or write-only, to prevent invalid bits from being written to or read from, respectively.
julia> a = reinterpret(Tuple{UInt8, UInt32}, UInt32[1, 2])
1-element reinterpret(Tuple{UInt8, UInt32}, ::Vector{UInt32}):
(0x01, 0x00000002)
julia> a[1] = 3
ERROR: Padding of type Tuple{UInt8, UInt32} is not compatible with type UInt32.
julia> b = reinterpret(UInt32, Tuple{UInt8, UInt32}[(0x01, 0x00000002)]); # showing will error
julia> b[1]
ERROR: Padding of type UInt32 is not compatible with type Tuple{UInt8, UInt32}.reinterpret(::Type{Out}, x::In)Change the type-interpretation of the binary data in the isbits value x
to that of the isbits type Out.
The size (ignoring padding) of Out has to be the same as that of the type of x.
For example, reinterpret(Float32, UInt32(7)) interprets the 4 bytes corresponding to UInt32(7) as a
Float32. Note that reinterpret(In, reinterpret(Out, x)) === x
julia> reinterpret(Float32, UInt32(7))
1.0f-44
julia> reinterpret(NTuple{2, UInt8}, 0x1234)
(0x34, 0x12)
julia> reinterpret(UInt16, (0x34, 0x12))
0x1234
julia> reinterpret(Tuple{UInt16, UInt8}, (0x01, 0x0203))
(0x0301, 0x02)Base.reshape — Function
reshape(A, dims...)::AbstractArray
reshape(A, dims)::AbstractArrayReturn an array with the same data as A, but with different
dimension sizes or number of dimensions. The two arrays share the same
underlying data, so that the result is mutable if and only if A is
mutable, and setting elements of one alters the values of the other.
The new dimensions may be specified either as a list of arguments or
as a shape tuple. At most one dimension may be specified with a :,
in which case its length is computed such that its product with all
the specified dimensions is equal to the length of the original array
A. The total number of elements must not change.
Examples
julia> A = Vector(1:16)
16-element Vector{Int64}:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
julia> reshape(A, (4, 4))
4×4 Matrix{Int64}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
julia> reshape(A, 2, :)
2×8 Matrix{Int64}:
1 3 5 7 9 11 13 15
2 4 6 8 10 12 14 16
julia> reshape(1:6, 2, 3)
2×3 reshape(::UnitRange{Int64}, 2, 3) with eltype Int64:
1 3 5
2 4 6Base.insertdims — Function
insertdims(A; dims)Inverse of dropdims; return an array with new singleton dimensions
at every dimension in dims.
Repeated dimensions are forbidden and the largest entry in dims must be
less than or equal than ndims(A) + length(dims).
The result shares the same underlying data as A, such that the
result is mutable if and only if A is mutable, and setting elements of one
alters the values of the other.
See also: dropdims, reshape, vec.
Examples
julia> x = [1 2 3; 4 5 6]
2×3 Matrix{Int64}:
1 2 3
4 5 6
julia> insertdims(x, dims=3)
2×3×1 Array{Int64, 3}:
[:, :, 1] =
1 2 3
4 5 6
julia> insertdims(x, dims=(1,2,5)) == reshape(x, 1, 1, 2, 3, 1)
true
julia> dropdims(insertdims(x, dims=(1,2,5)), dims=(1,2,5))
2×3 Matrix{Int64}:
1 2 3
4 5 6Base.dropdims — Function
dropdims(A; dims)Return an array with the same data as A, but with the dimensions specified by
dims removed. size(A,d) must equal 1 for every d in dims,
and repeated dimensions or numbers outside 1:ndims(A) are forbidden.
The result shares the same underlying data as A, such that the
result is mutable if and only if A is mutable, and setting elements of one
alters the values of the other.
Examples
julia> a = reshape(Vector(1:4),(2,2,1,1))
2×2×1×1 Array{Int64, 4}:
[:, :, 1, 1] =
1 3
2 4
julia> b = dropdims(a; dims=3)
2×2×1 Array{Int64, 3}:
[:, :, 1] =
1 3
2 4
julia> b[1,1,1] = 5; a
2×2×1×1 Array{Int64, 4}:
[:, :, 1, 1] =
5 3
2 4Base.vec — Function
vec(a::AbstractArray)::AbstractVectorReshape the array a as a one-dimensional column vector. Return a if it is
already an AbstractVector. The resulting array
shares the same underlying data as a, so it will only be mutable if a is
mutable, in which case modifying one will also modify the other.
Examples
julia> a = [1 2 3; 4 5 6]
2×3 Matrix{Int64}:
1 2 3
4 5 6
julia> vec(a)
6-element Vector{Int64}:
1
4
2
5
3
6
julia> vec(1:3)
1:3Base.SubArray — Type
SubArray{T,N,P,I,L} <: AbstractArray{T,N}N-dimensional view into a parent array (of type P) with an element type T, restricted by a tuple of indices (of type I). L is true for types that support fast linear indexing, and false otherwise.
Construct SubArrays using the view function.
Concatenation and permutation
Base.cat — Function
cat(A...; dims)Concatenate the input arrays along the dimensions specified in dims.
Along a dimension d in dims, the size of the output array is sum(size(a,d) for a in A).
Along other dimensions, all input arrays should have the same size,
which will also be the size of the output array along those dimensions.
If dims is a single number, the different arrays are tightly packed along that dimension.
If dims is an iterable containing several dimensions, the positions along these dimensions
are increased simultaneously for each input array, filling with zero elsewhere.
This allows one to construct block-diagonal matrices as cat(matrices...; dims=(1,2)),
and their higher-dimensional analogues.
The special case dims=1 is vcat, and dims=2 is hcat.
See also hvcat, hvncat, stack, repeat.
The keyword also accepts Val(dims).
Examples
Concatenate two arrays in different dimensions:
julia> a = [1 2 3]
1×3 Matrix{Int64}:
1 2 3
julia> b = [4 5 6]
1×3 Matrix{Int64}:
4 5 6
julia> cat(a, b; dims=1)
2×3 Matrix{Int64}:
1 2 3
4 5 6
julia> cat(a, b; dims=2)
1×6 Matrix{Int64}:
1 2 3 4 5 6
julia> cat(a, b; dims=(1, 2))
2×6 Matrix{Int64}:
1 2 3 0 0 0
0 0 0 4 5 6Extended Help
Concatenate 3D arrays:
julia> a = ones(2, 2, 3);
julia> b = ones(2, 2, 4);
julia> c = cat(a, b; dims=3);
julia> size(c) == (2, 2, 7)
trueConcatenate arrays of different sizes:
julia> cat([1 2; 3 4], [pi, pi], fill(10, 2,3,1); dims=2) # same as hcat
2×6×1 Array{Float64, 3}:
[:, :, 1] =
1.0 2.0 3.14159 10.0 10.0 10.0
3.0 4.0 3.14159 10.0 10.0 10.0Construct a block diagonal matrix:
julia> cat(true, trues(2,2), trues(4)', dims=(1,2)) # block-diagonal
4×7 Matrix{Bool}:
1 0 0 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 1 1 1julia> cat(1, [2], [3;;]; dims=Val(2))
1×3 Matrix{Int64}:
1 2 3julia> a = "aaa";
julia> b = "bbb";
julia> cat(a, b; dims=1)
2-element Vector{String}:
"aaa"
"bbb"
julia> cat(a, b; dims=2)
1×2 Matrix{String}:
"aaa" "bbb"
julia> a * b
"aaabbb"Base.vcat — Function
vcat(A...)Concatenate arrays or numbers vertically. Equivalent to cat(A...; dims=1),
and to the syntax [a; b; c].
To concatenate a large vector of arrays, reduce(vcat, A) calls an efficient method
when A isa AbstractVector{<:AbstractVecOrMat}, rather than working pairwise.
See also hcat, Iterators.flatten, stack.
Examples
julia> v = vcat([1,2], [3,4])
4-element Vector{Int64}:
1
2
3
4
julia> v == vcat(1, 2, [3,4]) # accepts numbers
true
julia> v == [1; 2; [3,4]] # syntax for the same operation
true
julia> summary(ComplexF64[1; 2; [3,4]]) # syntax for supplying the element type
"4-element Vector{ComplexF64}"
julia> vcat(range(1, 2, length=3)) # collects lazy ranges
3-element Vector{Float64}:
1.0
1.5
2.0
julia> two = ([10, 20, 30]', Float64[4 5 6; 7 8 9]) # row vector and a matrix
(adjoint([10, 20, 30]), [4.0 5.0 6.0; 7.0 8.0 9.0])
julia> vcat(two...)
3×3 Matrix{Float64}:
10.0 20.0 30.0
4.0 5.0 6.0
7.0 8.0 9.0
julia> vs = [[1, 2], [3, 4], [5, 6]];
julia> reduce(vcat, vs) # more efficient than vcat(vs...)
6-element Vector{Int64}:
1
2
3
4
5
6
julia> ans == collect(Iterators.flatten(vs))
trueBase.hcat — Function
hcat(A...)Concatenate arrays or numbers horizontally. Equivalent to cat(A...; dims=2),
and to the syntax [a b c] or [a;; b;; c].
For a large vector of arrays, reduce(hcat, A) calls an efficient method
when A isa AbstractVector{<:AbstractVecOrMat}.
For a vector of vectors, this can also be written stack(A).
Examples
julia> hcat([1,2], [3,4], [5,6])
2×3 Matrix{Int64}:
1 3 5
2 4 6
julia> hcat(1, 2, [30 40], [5, 6, 7]') # accepts numbers
1×7 Matrix{Int64}:
1 2 30 40 5 6 7
julia> ans == [1 2 [30 40] [5, 6, 7]'] # syntax for the same operation
true
julia> Float32[1 2 [30 40] [5, 6, 7]'] # syntax for supplying the eltype
1×7 Matrix{Float32}:
1.0 2.0 30.0 40.0 5.0 6.0 7.0
julia> ms = [zeros(2,2), [1 2; 3 4], [50 60; 70 80]];
julia> reduce(hcat, ms) # more efficient than hcat(ms...)
2×6 Matrix{Float64}:
0.0 0.0 1.0 2.0 50.0 60.0
0.0 0.0 3.0 4.0 70.0 80.0
julia> stack(ms) |> summary # disagrees on a vector of matrices
"2×2×3 Array{Float64, 3}"
julia> hcat(Int[], Int[], Int[]) # empty vectors, each of size (0,)
0×3 Matrix{Int64}
julia> hcat([1.1, 9.9], Matrix(undef, 2, 0)) # hcat with empty 2×0 Matrix
2×1 Matrix{Any}:
1.1
9.9Base.hvcat — Function
hvcat(blocks_per_row::Union{Tuple{Vararg{Int}}, Int}, values...)Horizontal and vertical concatenation in one call. This function is called for block matrix
syntax. The first argument specifies the number of arguments to concatenate in each block
row. If the first argument is a single integer n, then all block rows are assumed to have n
block columns.
Examples
julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6
(1, 2, 3, 4, 5, 6)
julia> [a b c; d e f]
2×3 Matrix{Int64}:
1 2 3
4 5 6
julia> hvcat((3,3), a,b,c,d,e,f)
2×3 Matrix{Int64}:
1 2 3
4 5 6
julia> [a b; c d; e f]
3×2 Matrix{Int64}:
1 2
3 4
5 6
julia> hvcat((2,2,2), a,b,c,d,e,f)
3×2 Matrix{Int64}:
1 2
3 4
5 6
julia> hvcat((2,2,2), a,b,c,d,e,f) == hvcat(2, a,b,c,d,e,f)
trueBase.hvncat — Function
hvncat(dim::Int, row_first, values...)
hvncat(dims::Tuple{Vararg{Int}}, row_first, values...)
hvncat(shape::Tuple{Vararg{Tuple}}, row_first, values...)Horizontal, vertical, and n-dimensional concatenation of many values in one call.
This function is called for block matrix syntax. The first argument either specifies the
shape of the concatenation, similar to hvcat, as a tuple of tuples, or the dimensions that
specify the key number of elements along each axis, and is used to determine the output
dimensions. The dims form is more performant, and is used by default when the concatenation
operation has the same number of elements along each axis (e.g., [a b; c d;;; e f ; g h]).
The shape form is used when the number of elements along each axis is unbalanced
(e.g., [a b ; c]). Unbalanced syntax needs additional validation overhead. The dim form
is an optimization for concatenation along just one dimension. row_first indicates how
values are ordered. The meaning of the first and second elements of shape are also
swapped based on row_first.
Examples
julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6
(1, 2, 3, 4, 5, 6)
julia> [a b c;;; d e f]
1×3×2 Array{Int64, 3}:
[:, :, 1] =
1 2 3
[:, :, 2] =
4 5 6
julia> hvncat((2,1,3), false, a,b,c,d,e,f)
2×1×3 Array{Int64, 3}:
[:, :, 1] =
1
2
[:, :, 2] =
3
4
[:, :, 3] =
5
6
julia> [a b;;; c d;;; e f]
1×2×3 Array{Int64, 3}:
[:, :, 1] =
1 2
[:, :, 2] =
3 4
[:, :, 3] =
5 6
julia> hvncat(((3, 3), (3, 3), (6,)), true, a, b, c, d, e, f)
1×3×2 Array{Int64, 3}:
[:, :, 1] =
1 2 3
[:, :, 2] =
4 5 6Examples for construction of the arguments
[a b c ; d e f ;;;
g h i ; j k l ;;;
m n o ; p q r ;;;
s t u ; v w x]
⇒ dims = (2, 3, 4)
[a b ; c ;;; d ;;;;]
___ _ _
2 1 1 = elements in each row (2, 1, 1)
_______ _
3 1 = elements in each column (3, 1)
_____________
4 = elements in each 3d slice (4,)
_____________
4 = elements in each 4d slice (4,)
⇒ shape = ((2, 1, 1), (3, 1), (4,), (4,)) with `row_first` = trueBase.stack — Function
stack(f, args...; [dims])Apply a function to each element of a collection, and stack the result.
Or to several collections, zipped together.
The function should return arrays (or tuples, or other iterators) all of the same size.
These become slices of the result, each separated along dims (if given) or by default
along the last dimensions.
Examples
julia> stack(c -> (c, c-32), "julia")
2×5 Matrix{Char}:
'j' 'u' 'l' 'i' 'a'
'J' 'U' 'L' 'I' 'A'
julia> stack(eachrow([1 2 3; 4 5 6]), (10, 100); dims=1) do row, n
vcat(row, row .* n, row ./ n)
end
2×9 Matrix{Float64}:
1.0 2.0 3.0 10.0 20.0 30.0 0.1 0.2 0.3
4.0 5.0 6.0 400.0 500.0 600.0 0.04 0.05 0.06stack(iter; [dims])Combine a collection of arrays (or other iterable objects) of equal size into one larger array, by arranging them along one or more new dimensions.
By default the axes of the elements are placed first,
giving size(result) = (size(first(iter))..., size(iter)...).
This has the same order of elements as Iterators.flatten(iter).
With keyword dims::Integer, instead the ith element of iter becomes the slice
selectdim(result, dims, i), so that size(result, dims) == length(iter).
In this case stack reverses the action of eachslice with the same dims.
The various cat functions also combine arrays. However, these all
extend the arrays' existing (possibly trivial) dimensions, rather than placing
the arrays along new dimensions.
They also accept arrays as separate arguments, rather than a single collection.
Examples
julia> vecs = (1:2, [30, 40], Float32[500, 600]);
julia> mat = stack(vecs)
2×3 Matrix{Float32}:
1.0 30.0 500.0
2.0 40.0 600.0
julia> mat == hcat(vecs...) == reduce(hcat, collect(vecs))
true
julia> vec(mat) == vcat(vecs...) == reduce(vcat, collect(vecs))
true
julia> stack(zip(1:4, 10:99)) # accepts any iterators of iterators
2×4 Matrix{Int64}:
1 2 3 4
10 11 12 13
julia> vec(ans) == collect(Iterators.flatten(zip(1:4, 10:99)))
true
julia> stack(vecs; dims=1) # unlike any cat function, 1st axis of vecs[1] is 2nd axis of result
3×2 Matrix{Float32}:
1.0 2.0
30.0 40.0
500.0 600.0
julia> x = rand(3,4);
julia> x == stack(eachcol(x)) == stack(eachrow(x), dims=1) # inverse of eachslice
trueHigher-dimensional examples:
julia> A = rand(5, 7, 11);
julia> E = eachslice(A, dims=2); # a vector of matrices
julia> (element = size(first(E)), container = size(E))
(element = (5, 11), container = (7,))
julia> stack(E) |> size
(5, 11, 7)
julia> stack(E) == stack(E; dims=3) == cat(E...; dims=3)
true
julia> A == stack(E; dims=2)
true
julia> M = (fill(10i+j, 2, 3) for i in 1:5, j in 1:7);
julia> (element = size(first(M)), container = size(M))
(element = (2, 3), container = (5, 7))
julia> stack(M) |> size # keeps all dimensions
(2, 3, 5, 7)
julia> stack(M; dims=1) |> size # vec(container) along dims=1
(35, 2, 3)
julia> hvcat(5, M...) |> size # hvcat puts matrices next to each other
(14, 15)Base.circshift — Function
circshift(A, shifts)Circularly shift, i.e. rotate, the data in A. The second argument is a tuple or
vector giving the amount to shift in each dimension, or an integer to shift only in the
first dimension.
The generated code is most efficient when the shift amounts are known at compile-time, i.e., compile-time constants.
See also: circshift!, circcopy!, bitrotate, <<.
Examples
julia> b = reshape(Vector(1:16), (4,4))
4×4 Matrix{Int64}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
julia> circshift(b, (0,2))
4×4 Matrix{Int64}:
9 13 1 5
10 14 2 6
11 15 3 7
12 16 4 8
julia> circshift(b, (-1,0))
4×4 Matrix{Int64}:
2 6 10 14
3 7 11 15
4 8 12 16
1 5 9 13
julia> a = BitArray([true, true, false, false, true])
5-element BitVector:
1
1
0
0
1
julia> circshift(a, 1)
5-element BitVector:
1
1
1
0
0
julia> circshift(a, -1)
5-element BitVector:
1
0
0
1
1
julia> x = (1, 2, 3, 4, 5)
(1, 2, 3, 4, 5)
julia> circshift(x, 4)
(2, 3, 4, 5, 1)
julia> z = (1, 'a', -7.0, 3)
(1, 'a', -7.0, 3)
julia> circshift(z, -1)
('a', -7.0, 3, 1)Base.circshift! — Function
circshift!(dest, src, shifts)Circularly shift, i.e. rotate, the data in src, storing the result in
dest. shifts specifies the amount to shift in each dimension.
See also circshift.
circshift!(a::AbstractVector, shift::Integer)Circularly shift, or rotate, the data in vector a by shift positions.
Examples
julia> circshift!([1, 2, 3, 4, 5], 2)
5-element Vector{Int64}:
4
5
1
2
3
julia> circshift!([1, 2, 3, 4, 5], -2)
5-element Vector{Int64}:
3
4
5
1
2Base.circcopy! — Function
circcopy!(dest, src)Copy src to dest, indexing each dimension modulo its length.
src and dest must have the same size, but can be offset in
their indices; any offset results in a (circular) wraparound. If the
arrays have overlapping indices, then on the domain of the overlap
dest agrees with src.
See also: circshift.
Examples
julia> src = reshape(Vector(1:16), (4,4))
4×4 Matrix{Int64}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
julia> dest = OffsetArray{Int}(undef, (0:3,2:5));
julia> circcopy!(dest, src)
4×4 OffsetArray(::Matrix{Int64}, 0:3, 2:5) with eltype Int64 with indices 0:3×2:5:
8 12 16 4
5 9 13 1
6 10 14 2
7 11 15 3
julia> dest[1:3,2:4] == src[1:3,2:4]
trueBase.findall — Method
findall(A)Return a vector I of the true indices or keys of A.
If there are no such elements of A, return an empty array.
To search for other kinds of values, pass a predicate as the first argument.
Indices or keys are of the same type as those returned by keys(A)
and pairs(A).
See also: findfirst, searchsorted.
Examples
julia> A = [true, false, false, true]
4-element Vector{Bool}:
1
0
0
1
julia> findall(A)
2-element Vector{Int64}:
1
4
julia> A = [true false; false true]
2×2 Matrix{Bool}:
1 0
0 1
julia> findall(A)
2-element Vector{CartesianIndex{2}}:
CartesianIndex(1, 1)
CartesianIndex(2, 2)
julia> findall(falses(3))
Int64[]Base.findall — Method
findall(f::Function, A)Return a vector I of the indices or keys of A where f(A[I]) returns true.
If there are no such elements of A, return an empty array.
Indices or keys are of the same type as those returned by keys(A)
and pairs(A).
Examples
julia> x = [1, 3, 4]
3-element Vector{Int64}:
1
3
4
julia> findall(isodd, x)
2-element Vector{Int64}:
1
2
julia> A = [1 2 0; 3 4 0]
2×3 Matrix{Int64}:
1 2 0
3 4 0
julia> findall(isodd, A)
2-element Vector{CartesianIndex{2}}:
CartesianIndex(1, 1)
CartesianIndex(2, 1)
julia> findall(!iszero, A)
4-element Vector{CartesianIndex{2}}:
CartesianIndex(1, 1)
CartesianIndex(2, 1)
CartesianIndex(1, 2)
CartesianIndex(2, 2)
julia> d = Dict(:A => 10, :B => -1, :C => 0)
Dict{Symbol, Int64} with 3 entries:
:A => 10
:B => -1
:C => 0
julia> findall(≥(0), d)
2-element Vector{Symbol}:
:A
:C
Base.findfirst — Method
findfirst(A)Return the index or key of the first true value in A.
Return nothing if no such value is found.
To search for other kinds of values, pass a predicate as the first argument.
Indices or keys are of the same type as those returned by keys(A)
and pairs(A).
See also: findall, findnext, findlast, searchsortedfirst.
Examples
julia> A = [false, false, true, false]
4-element Vector{Bool}:
0
0
1
0
julia> findfirst(A)
3
julia> findfirst(falses(3)) # returns nothing, but not printed in the REPL
julia> A = [false false; true false]
2×2 Matrix{Bool}:
0 0
1 0
julia> findfirst(A)
CartesianIndex(2, 1)Base.findfirst — Method
findfirst(predicate::Function, A)Return the index or key of the first element of A for which predicate returns true.
Return nothing if there is no such element.
Indices or keys are of the same type as those returned by keys(A)
and pairs(A).
Examples
julia> A = [1, 4, 2, 2]
4-element Vector{Int64}:
1
4
2
2
julia> findfirst(iseven, A)
2
julia> findfirst(x -> x>10, A) # returns nothing, but not printed in the REPL
julia> findfirst(isequal(4), A)
2
julia> A = [1 4; 2 2]
2×2 Matrix{Int64}:
1 4
2 2
julia> findfirst(iseven, A)
CartesianIndex(2, 1)Base.findlast — Method
findlast(A)Return the index or key of the last true value in A.
Return nothing if there is no true value in A.
Indices or keys are of the same type as those returned by keys(A)
and pairs(A).
See also: findfirst, findprev, findall.
Examples
julia> A = [true, false, true, false]
4-element Vector{Bool}:
1
0
1
0
julia> findlast(A)
3
julia> A = falses(2,2);
julia> findlast(A) # returns nothing, but not printed in the REPL
julia> A = [true false; true false]
2×2 Matrix{Bool}:
1 0
1 0
julia> findlast(A)
CartesianIndex(2, 1)Base.findlast — Method
findlast(predicate::Function, A)Return the index or key of the last element of A for which predicate returns true.
Return nothing if there is no such element.
Indices or keys are of the same type as those returned by keys(A)
and pairs(A).
Examples
julia> A = [1, 2, 3, 4]
4-element Vector{Int64}:
1
2
3
4
julia> findlast(isodd, A)
3
julia> findlast(x -> x > 5, A) # returns nothing, but not printed in the REPL
julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> findlast(isodd, A)
CartesianIndex(2, 1)Base.findnext — Method
findnext(A, i)Find the next index after or including i of a true element of A,
or nothing if not found.
Indices are of the same type as those returned by keys(A)
and pairs(A).
Examples
julia> A = [false, false, true, false]
4-element Vector{Bool}:
0
0
1
0
julia> findnext(A, 1)
3
julia> findnext(A, 4) # returns nothing, but not printed in the REPL
julia> A = [false false; true false]
2×2 Matrix{Bool}:
0 0
1 0
julia> findnext(A, CartesianIndex(1, 1))
CartesianIndex(2, 1)Base.findnext — Method
findnext(predicate::Function, A, i)Find the next index after or including i of an element of A
for which predicate returns true, or nothing if not found. This works for
Arrays, Strings, and most other collections that support getindex,
keys(A), and nextind.
Indices are of the same type as those returned by keys(A)
and pairs(A).
Examples
julia> A = [1, 4, 2, 2];
julia> findnext(isodd, A, 1)
1
julia> findnext(isodd, A, 2) # returns nothing, but not printed in the REPL
julia> A = [1 4; 2 2];
julia> findnext(isodd, A, CartesianIndex(1, 1))
CartesianIndex(1, 1)
julia> findnext(isspace, "a b c", 3)
4Base.findprev — Method
findprev(A, i)Find the previous index before or including i of a true element of A,
or nothing if not found.
Indices are of the same type as those returned by keys(A)
and pairs(A).
See also: findnext, findfirst, findall.
Examples
julia> A = [false, false, true, true]
4-element Vector{Bool}:
0
0
1
1
julia> findprev(A, 3)
3
julia> findprev(A, 1) # returns nothing, but not printed in the REPL
julia> A = [false false; true true]
2×2 Matrix{Bool}:
0 0
1 1
julia> findprev(A, CartesianIndex(2, 1))
CartesianIndex(2, 1)Base.findprev — Method
findprev(predicate::Function, A, i)Find the previous index before or including i of an element of A
for which predicate returns true, or nothing if not found. This works for
Arrays, Strings, and most other collections that support getindex,
keys(A), and nextind.
Indices are of the same type as those returned by keys(A)
and pairs(A).
Examples
julia> A = [4, 6, 1, 2]
4-element Vector{Int64}:
4
6
1
2
julia> findprev(isodd, A, 1) # returns nothing, but not printed in the REPL
julia> findprev(isodd, A, 3)
3
julia> A = [4 6; 1 2]
2×2 Matrix{Int64}:
4 6
1 2
julia> findprev(isodd, A, CartesianIndex(1, 2))
CartesianIndex(2, 1)
julia> findprev(isspace, "a b c", 3)
2Base.permutedims — Function
permutedims(v::AbstractVector)Reshape vector v into a 1 × length(v) row matrix.
Differs from transpose in that
the operation is not recursive, which is especially useful for arrays of non-numeric values
(where the recursive transpose might throw an error).
Examples
Unlike transpose, permutedims can be used on vectors of
arbitrary non-numeric elements, such as strings:
julia> permutedims(["a", "b", "c"])
1×3 Matrix{String}:
"a" "b" "c"For vectors of numbers, permutedims(v) works much like transpose(v)
except that the return type differs (it uses reshape
rather than a LinearAlgebra.Transpose view, though both
share memory with the original array v):
julia> v = [1, 2, 3, 4]
4-element Vector{Int64}:
1
2
3
4
julia> p = permutedims(v)
1×4 Matrix{Int64}:
1 2 3 4
julia> r = transpose(v)
1×4 transpose(::Vector{Int64}) with eltype Int64:
1 2 3 4
julia> p == r
true
julia> typeof(r)
Transpose{Int64, Vector{Int64}}
julia> p[1] = 5; r[2] = 6; # mutating p or r also changes v
julia> v # shares memory with both p and r
4-element Vector{Int64}:
5
6
3
4However, permutedims produces results that differ from transpose
for vectors whose elements are themselves numeric matrices:
julia> V = [[[1 2; 3 4]]; [[5 6; 7 8]]]
2-element Vector{Matrix{Int64}}:
[1 2; 3 4]
[5 6; 7 8]
julia> permutedims(V)
1×2 Matrix{Matrix{Int64}}:
[1 2; 3 4] [5 6; 7 8]
julia> transpose(V)
1×2 transpose(::Vector{Matrix{Int64}}) with eltype Transpose{Int64, Matrix{Int64}}:
[1 3; 2 4] [5 7; 6 8]permutedims(A::AbstractArray, perm)
permutedims(A::AbstractMatrix)Permute the dimensions (axes) of array A. perm is a tuple or vector of ndims(A) integers
specifying the permutation.
If A is a 2d array (AbstractMatrix), then
perm defaults to (2,1), swapping the two axes of A (the rows and columns
of the matrix). This differs from transpose in that the
operation is not recursive, which is especially useful for arrays of non-numeric values
(where the recursive transpose would throw an error) and/or 2d arrays that do not represent
linear operators.
For 1d arrays, see permutedims(v::AbstractVector), which returns a 1-row “matrix”.
See also permutedims!, PermutedDimsArray, transpose, invperm.
Examples
2d arrays:
Unlike transpose, permutedims can be used to swap rows and columns of 2d arrays of
arbitrary non-numeric elements, such as strings:
julia> A = ["a" "b" "c"
"d" "e" "f"]
2×3 Matrix{String}:
"a" "b" "c"
"d" "e" "f"
julia> permutedims(A)
3×2 Matrix{String}:
"a" "d"
"b" "e"
"c" "f"And permutedims produces results that differ from transpose
for matrices whose elements are themselves numeric matrices:
julia> a = [1 2; 3 4];
julia> b = [5 6; 7 8];
julia> c = [9 10; 11 12];
julia> d = [13 14; 15 16];
julia> X = [[a] [b]; [c] [d]]
2×2 Matrix{Matrix{Int64}}:
[1 2; 3 4] [5 6; 7 8]
[9 10; 11 12] [13 14; 15 16]
julia> permutedims(X)
2×2 Matrix{Matrix{Int64}}:
[1 2; 3 4] [9 10; 11 12]
[5 6; 7 8] [13 14; 15 16]
julia> transpose(X)
2×2 transpose(::Matrix{Matrix{Int64}}) with eltype Transpose{Int64, Matrix{Int64}}:
[1 3; 2 4] [9 11; 10 12]
[5 7; 6 8] [13 15; 14 16]Multi-dimensional arrays
julia> A = reshape(Vector(1:8), (2,2,2))
2×2×2 Array{Int64, 3}:
[:, :, 1] =
1 3
2 4
[:, :, 2] =
5 7
6 8
julia> perm = (3, 1, 2); # put the last dimension first
julia> B = permutedims(A, perm)
2×2×2 Array{Int64, 3}:
[:, :, 1] =
1 2
5 6
[:, :, 2] =
3 4
7 8
julia> A == permutedims(B, invperm(perm)) # the inverse permutation
trueFor each dimension i of B = permutedims(A, perm), its corresponding dimension of A
will be perm[i]. This means the equality size(B, i) == size(A, perm[i]) holds.
julia> A = randn(5, 7, 11, 13);
julia> perm = [4, 1, 3, 2];
julia> B = permutedims(A, perm);
julia> size(B)
(13, 5, 11, 7)
julia> size(A)[perm] == ans
trueBase.permutedims! — Function
permutedims!(dest, src, perm)Permute the dimensions of array src and store the result in the array dest. perm is a
vector specifying a permutation of length ndims(src). The preallocated array dest should
have size(dest) == size(src)[perm] and is completely overwritten. No in-place permutation
is supported and unexpected results will happen if src and dest have overlapping memory
regions.
See also permutedims.
Base.PermutedDimsArrays.PermutedDimsArray — Type
PermutedDimsArray(A, perm) -> BGiven an AbstractArray A, create a view B such that the
dimensions appear to be permuted. Similar to permutedims, except
that no copying occurs (B shares storage with A).
See also permutedims, invperm.
Examples
julia> A = rand(3,5,4);
julia> B = PermutedDimsArray(A, (3,1,2));
julia> size(B)
(4, 3, 5)
julia> B[3,1,2] == A[1,2,3]
trueBase.promote_shape — Function
promote_shape(s1, s2)Check two array shapes for compatibility, allowing trailing singleton dimensions, and return whichever shape has more dimensions.
Examples
julia> a = fill(1, (3,4,1,1,1));
julia> b = fill(1, (3,4));
julia> promote_shape(a,b)
(Base.OneTo(3), Base.OneTo(4), Base.OneTo(1), Base.OneTo(1), Base.OneTo(1))
julia> promote_shape((2,3,1,4), (2, 3, 1, 4, 1))
(2, 3, 1, 4, 1)Array functions
Base.accumulate — Function
accumulate(op, A; dims::Integer, [init])Cumulative operation op along the dimension dims of A (providing dims is optional
for vectors). An initial value init may optionally be provided by a keyword argument. See
also accumulate! to use a preallocated output array, both for performance and
to control the precision of the output (e.g. to avoid overflow).
For common operations there are specialized variants of accumulate,
see cumsum, cumprod. For a lazy version, see
Iterators.accumulate.
Examples
julia> accumulate(+, [1,2,3])
3-element Vector{Int64}:
1
3
6
julia> accumulate(min, (1, -2, 3, -4, 5), init=0)
(0, -2, -2, -4, -4)
julia> accumulate(/, (2, 4, Inf), init=100)
(50.0, 12.5, 0.0)
julia> accumulate(=>, i^2 for i in 1:3)
3-element Vector{Any}:
1
1 => 4
(1 => 4) => 9
julia> accumulate(+, fill(1, 3, 4))
3×4 Matrix{Int64}:
1 4 7 10
2 5 8 11
3 6 9 12
julia> accumulate(+, fill(1, 2, 5), dims=2, init=100.0)
2×5 Matrix{Float64}:
101.0 102.0 103.0 104.0 105.0
101.0 102.0 103.0 104.0 105.0Base.accumulate! — Function
accumulate!(op, B, A; [dims], [init])Cumulative operation op on A along the dimension dims, storing the result in B.
Providing dims is optional for vectors. If the keyword argument init is given, its
value is used to instantiate the accumulation.
See also accumulate, cumsum!, cumprod!.
Examples
julia> x = [1, 0, 2, 0, 3];
julia> y = rand(5);
julia> accumulate!(+, y, x);
julia> y
5-element Vector{Float64}:
1.0
1.0
3.0
3.0
6.0
julia> A = [1 2 3; 4 5 6];
julia> B = similar(A);
julia> accumulate!(-, B, A, dims=1)
2×3 Matrix{Int64}:
1 2 3
-3 -3 -3
julia> accumulate!(*, B, A, dims=2, init=10)
2×3 Matrix{Int64}:
10 20 60
40 200 1200Base.cumprod — Function
cumprod(itr)Cumulative product of an iterator.
See also cumprod!, accumulate, cumsum.
Examples
julia> cumprod(fill(1//2, 3))
3-element Vector{Rational{Int64}}:
1//2
1//4
1//8
julia> cumprod((1, 2, 1, 3, 1))
(1, 2, 2, 6, 6)
julia> cumprod("julia")
5-element Vector{String}:
"j"
"ju"
"jul"
"juli"
"julia"cumprod(A; dims::Integer)Cumulative product along the dimension dim. See also
cumprod! to use a preallocated output array, both for performance and
to control the precision of the output (e.g. to avoid overflow).
Examples
julia> a = Int8[1 2 3; 4 5 6];
julia> cumprod(a, dims=1)
2×3 Matrix{Int64}:
1 2 3
4 10 18
julia> cumprod(a, dims=2)
2×3 Matrix{Int64}:
1 2 6
4 20 120Base.cumprod! — Function
cumprod!(y::AbstractVector, x::AbstractVector)Cumulative product of a vector x, storing the result in y.
See also cumprod.
cumprod!(B, A; dims::Integer)Cumulative product of A along the dimension dims, storing the result in B.
See also cumprod.
Base.cumsum — Function
cumsum(itr)Cumulative sum of an iterator.
See also accumulate to apply functions other than +.
Examples
julia> cumsum(1:3)
3-element Vector{Int64}:
1
3
6
julia> cumsum((true, false, true, false, true))
(1, 1, 2, 2, 3)
julia> cumsum(fill(1, 2) for i in 1:3)
3-element Vector{Vector{Int64}}:
[1, 1]
[2, 2]
[3, 3]cumsum(A; dims::Integer)Cumulative sum along the dimension dims. See also cumsum! to use a
preallocated output array, both for performance and to control the precision of
the output (e.g. to avoid overflow).
Examples
julia> a = [1 2 3; 4 5 6]
2×3 Matrix{Int64}:
1 2 3
4 5 6
julia> cumsum(a, dims=1)
2×3 Matrix{Int64}:
1 2 3
5 7 9
julia> cumsum(a, dims=2)
2×3 Matrix{Int64}:
1 3 6
4 9 15The return array's eltype is Int for signed integers of less than system
word size and UInt for unsigned integers of less than system word size.
To preserve eltype of arrays with small signed or unsigned integer
accumulate(+, A) should be used.
julia> cumsum(Int8[100, 28])
2-element Vector{Int64}:
100
128
julia> accumulate(+,Int8[100, 28])
2-element Vector{Int8}:
100
-128In the former case, the integers are widened to system word size and
therefore the result is Int64[100, 128]. In the latter case, no such
widening happens and integer overflow results in Int8[100, -128].
Base.cumsum! — Function
cumsum!(B, A; dims::Integer)Cumulative sum of A along the dimension dims, storing the result in B. See also cumsum.
Base.diff — Function
diff(A::AbstractVector)
diff(A::AbstractArray; dims::Integer)Finite difference operator on a vector or a multidimensional array A. In the
latter case the dimension to operate on needs to be specified with the dims
keyword argument.
Examples
julia> a = [2 4; 6 16]
2×2 Matrix{Int64}:
2 4
6 16
julia> diff(a, dims=2)
2×1 Matrix{Int64}:
2
10
julia> diff(vec(a))
3-element Vector{Int64}:
4
-2
12Base.repeat — Function
repeat(A::AbstractArray; inner=ntuple(Returns(1), ndims(A)), outer=ntuple(Returns(1), ndims(A)))Construct an array by repeating the entries of A. The i-th element of inner specifies
the number of times that the individual entries of the i-th dimension of A should be
repeated. The i-th element of outer specifies the number of times that a slice along the
i-th dimension of A should be repeated. If inner or outer are omitted, no repetition
is performed.
Examples
julia> repeat(1:2, inner=2)
4-element Vector{Int64}:
1
1
2
2
julia> repeat(1:2, outer=2)
4-element Vector{Int64}:
1
2
1
2
julia> repeat([1 2; 3 4], inner=(2, 1), outer=(1, 3))
4×6 Matrix{Int64}:
1 2 1 2 1 2
1 2 1 2 1 2
3 4 3 4 3 4
3 4 3 4 3 4repeat(A::AbstractArray, counts::Integer...)Construct an array by repeating array A a given number of times in each dimension, specified by counts.
See also: fill, Iterators.repeated, Iterators.cycle.
Examples
julia> repeat([1, 2, 3], 2)
6-element Vector{Int64}:
1
2
3
1
2
3
julia> repeat([1, 2, 3], 2, 3)
6×3 Matrix{Int64}:
1 1 1
2 2 2
3 3 3
1 1 1
2 2 2
3 3 3repeat(c::AbstractChar, r::Integer)::StringRepeat a character r times. This can equivalently be accomplished by calling
c^r.
Examples
julia> repeat('A', 3)
"AAA"repeat(s::AbstractString, r::Integer)Repeat a string r times. This can be written as s^r.
See also ^.
Examples
julia> repeat("ha", 3)
"hahaha"Base.rot180 — Function
rot180(A, k)Rotate matrix A 180 degrees an integer k number of times.
If k is even, this is equivalent to a copy.
Examples
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> rot180(a,1)
2×2 Matrix{Int64}:
4 3
2 1
julia> rot180(a,2)
2×2 Matrix{Int64}:
1 2
3 4rot180(A)Rotate matrix A 180 degrees.
Examples
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> rot180(a)
2×2 Matrix{Int64}:
4 3
2 1Base.rotl90 — Function
rotl90(A, k)Left-rotate matrix A 90 degrees counterclockwise an integer k number of times.
If k is a multiple of four (including zero), this is equivalent to a copy.
Examples
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> rotl90(a,1)
2×2 Matrix{Int64}:
2 4
1 3
julia> rotl90(a,2)
2×2 Matrix{Int64}:
4 3
2 1
julia> rotl90(a,3)
2×2 Matrix{Int64}:
3 1
4 2
julia> rotl90(a,4)
2×2 Matrix{Int64}:
1 2
3 4rotl90(A)Rotate matrix A left 90 degrees.
Examples
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> rotl90(a)
2×2 Matrix{Int64}:
2 4
1 3Base.rotr90 — Function
rotr90(A, k)Right-rotate matrix A 90 degrees clockwise an integer k number of times.
If k is a multiple of four (including zero), this is equivalent to a copy.
Examples
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> rotr90(a,1)
2×2 Matrix{Int64}:
3 1
4 2
julia> rotr90(a,2)
2×2 Matrix{Int64}:
4 3
2 1
julia> rotr90(a,3)
2×2 Matrix{Int64}:
2 4
1 3
julia> rotr90(a,4)
2×2 Matrix{Int64}:
1 2
3 4rotr90(A)Rotate matrix A right 90 degrees.
Examples
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> rotr90(a)
2×2 Matrix{Int64}:
3 1
4 2Base.mapslices — Function
mapslices(f, A; dims)Transform the given dimensions of array A by applying a function f on each slice
of the form A[..., :, ..., :, ...], with a colon at each d in dims. The results are
concatenated along the remaining dimensions.
For example, if dims = [1,2] and A is 4-dimensional, then f is called on x = A[:,:,i,j]
for all i and j, and f(x) becomes R[:,:,i,j] in the result R.
See also eachcol or eachslice, used with map or stack.
Examples
julia> A = reshape(1:30,(2,5,3))
2×5×3 reshape(::UnitRange{Int64}, 2, 5, 3) with eltype Int64:
[:, :, 1] =
1 3 5 7 9
2 4 6 8 10
[:, :, 2] =
11 13 15 17 19
12 14 16 18 20
[:, :, 3] =
21 23 25 27 29
22 24 26 28 30
julia> f(x::Matrix) = fill(x[1,1], 1,4); # returns a 1×4 matrix
julia> B = mapslices(f, A, dims=(1,2))
1×4×3 Array{Int64, 3}:
[:, :, 1] =
1 1 1 1
[:, :, 2] =
11 11 11 11
[:, :, 3] =
21 21 21 21
julia> f2(x::AbstractMatrix) = fill(x[1,1], 1,4);
julia> B == stack(f2, eachslice(A, dims=3))
true
julia> g(x) = x[begin] // x[end-1]; # returns a number
julia> mapslices(g, A, dims=[1,3])
1×5×1 Array{Rational{Int64}, 3}:
[:, :, 1] =
1//21 3//23 1//5 7//27 9//29
julia> map(g, eachslice(A, dims=2))
5-element Vector{Rational{Int64}}:
1//21
3//23
1//5
7//27
9//29
julia> mapslices(sum, A; dims=(1,3)) == sum(A; dims=(1,3))
trueNotice that in eachslice(A; dims=2), the specified dimension is the
one without a colon in the slice. This is view(A,:,i,:), whereas
mapslices(f, A; dims=(1,3)) uses A[:,i,:]. The function f may mutate
values in the slice without affecting A.
Base.eachrow — Function
eachrow(A::AbstractVecOrMat) <: AbstractVectorCreate a RowSlices object that is a vector of rows of matrix or vector A.
Row slices are returned as AbstractVector views of A.
For the inverse, see stack(rows; dims=1).
See also eachcol, eachslice and mapslices.
Examples
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> s = eachrow(a)
2-element RowSlices{Matrix{Int64}, Tuple{Base.OneTo{Int64}}, SubArray{Int64, 1, Matrix{Int64}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}}, true}}:
[1, 2]
[3, 4]
julia> s[1]
2-element view(::Matrix{Int64}, 1, :) with eltype Int64:
1
2Base.eachcol — Function
eachcol(A::AbstractVecOrMat) <: AbstractVectorCreate a ColumnSlices object that is a vector of columns of matrix or vector A.
Column slices are returned as AbstractVector views of A.
For the inverse, see stack(cols) or reduce(hcat, cols).
See also eachrow, eachslice and mapslices.
Examples
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> s = eachcol(a)
2-element ColumnSlices{Matrix{Int64}, Tuple{Base.OneTo{Int64}}, SubArray{Int64, 1, Matrix{Int64}, Tuple{Base.Slice{Base.OneTo{Int64}}, Int64}, true}}:
[1, 3]
[2, 4]
julia> s[1]
2-element view(::Matrix{Int64}, :, 1) with eltype Int64:
1
3Base.eachslice — Function
eachslice(A::AbstractArray; dims, drop=true)Create a sliced object, usually Slices, that is an array of slices over dimensions
dims of A, returning views that select all the data from the other dimensions in A.
dims can either be an integer or a tuple of integers.
If drop = true (the default), the outer slices will drop the inner dimensions, and
the ordering of the dimensions will match those in dims. If drop = false, then the
slices object will have the same dimensionality as the underlying array, with inner
dimensions having size 1.
See stack(slices; dims) for the inverse of eachslice(A; dims::Integer).
See also eachrow, eachcol, mapslices and selectdim.
Prior to Julia 1.9, this returned an iterator, and only a single dimension dims was supported.
Examples
julia> m = [1 2 3; 4 5 6; 7 8 9]
3×3 Matrix{Int64}:
1 2 3
4 5 6
7 8 9
julia> s = eachslice(m, dims=1)
3-element RowSlices{Matrix{Int64}, Tuple{Base.OneTo{Int64}}, SubArray{Int64, 1, Matrix{Int64}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}}, true}}:
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
julia> s[1]
3-element view(::Matrix{Int64}, 1, :) with eltype Int64:
1
2
3
julia> eachslice(m, dims=1, drop=false)
3×1 Slices{Matrix{Int64}, Tuple{Int64, Colon}, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}, SubArray{Int64, 1, Matrix{Int64}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}}, true}, 2}:
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]Combinatorics
Base.invperm — Function
invperm(v)Return the inverse permutation of v.
If B = A[v], then A == B[invperm(v)].
See also sortperm, invpermute!, isperm, permutedims.
Examples
julia> p = (2, 3, 1);
julia> invperm(p)
(3, 1, 2)
julia> v = [2; 4; 3; 1];
julia> invperm(v)
4-element Vector{Int64}:
4
1
3
2
julia> A = ['a','b','c','d'];
julia> B = A[v]
4-element Vector{Char}:
'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)
'd': ASCII/Unicode U+0064 (category Ll: Letter, lowercase)
'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase)
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
julia> B[invperm(v)]
4-element Vector{Char}:
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)
'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase)
'd': ASCII/Unicode U+0064 (category Ll: Letter, lowercase)Base.isperm — Function
isperm(v)::BoolReturn true if v is a valid permutation.
Examples
julia> isperm([1; 2])
true
julia> isperm([1; 3])
falseBase.permute! — Method
permute!(v, p)Permute vector v according to permutation p, storing the result back into v.
No checking is done to verify that p is a permutation.
To return a new permutation, use v[p]. This is generally faster than permute!(v, p);
it is even faster to write into a pre-allocated output array with u .= @view v[p].
(Even though permute! overwrites v in-place, it internally requires some allocation.)
See also invpermute!.
Examples
julia> A = [1, 1, 3, 4];
julia> perm = [2, 4, 3, 1];
julia> permute!(A, perm);
julia> A
4-element Vector{Int64}:
1
4
3
1Base.invpermute! — Function
invpermute!(v, p)Like permute!, but the inverse of the given permutation is applied.
Note that if you have a pre-allocated output array (e.g. u = similar(v)),
it is quicker to instead employ u[p] = v. (invpermute! internally
allocates a copy of the data.)
Examples
julia> A = [1, 1, 3, 4];
julia> perm = [2, 4, 3, 1];
julia> invpermute!(A, perm);
julia> A
4-element Vector{Int64}:
4
1
3
1Base.reverse — Method
reverse(A; dims=:)Reverse A along dimension dims, which can be an integer (a
single dimension), a tuple of integers (a tuple of dimensions)
or : (reverse along all the dimensions, the default). See
also reverse! for in-place reversal.
Examples
julia> b = Int64[1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> reverse(b, dims=2)
2×2 Matrix{Int64}:
2 1
4 3
julia> reverse(b)
2×2 Matrix{Int64}:
4 3
2 1Base.reverseind — Function
reverseind(v, i)Given an index i in reverse(v), return the corresponding index in
v so that v[reverseind(v,i)] == reverse(v)[i]. (This can be nontrivial in
cases where v contains non-ASCII characters.)
Examples
julia> s = "Julia🚀"
"Julia🚀"
julia> r = reverse(s)
"🚀ailuJ"
julia> for i in eachindex(s)
print(r[reverseind(r, i)])
end
Julia🚀Base.reverse! — Function
reverse!(A; dims=:)Like reverse, but operates in-place in A.
reverse!(v [, start=firstindex(v) [, stop=lastindex(v) ]]) -> vIn-place version of reverse.
Examples
julia> A = Vector(1:5)
5-element Vector{Int64}:
1
2
3
4
5
julia> reverse!(A);
julia> A
5-element Vector{Int64}:
5
4
3
2
1