Numbers
Standard Numeric Types
A type tree for all subtypes of Number
in Base
is shown below. Abstract types have been marked, the rest are concrete types.
Number (Abstract Type)
├─ Complex
└─ Real (Abstract Type)
├─ AbstractFloat (Abstract Type)
│ ├─ Float16
│ ├─ Float32
│ ├─ Float64
│ └─ BigFloat
├─ Integer (Abstract Type)
│ ├─ Bool
│ ├─ Signed (Abstract Type)
│ │ ├─ Int8
│ │ ├─ Int16
│ │ ├─ Int32
│ │ ├─ Int64
│ │ ├─ Int128
│ │ └─ BigInt
│ └─ Unsigned (Abstract Type)
│ ├─ UInt8
│ ├─ UInt16
│ ├─ UInt32
│ ├─ UInt64
│ └─ UInt128
├─ Rational
└─ AbstractIrrational (Abstract Type)
└─ Irrational
Abstract number types
Core.Number
— TypeNumber
Abstract supertype for all number types.
Core.Real
— TypeReal <: Number
Abstract supertype for all real numbers.
Core.AbstractFloat
— TypeAbstractFloat <: Real
Abstract supertype for all floating point numbers.
Core.Integer
— TypeInteger <: Real
Abstract supertype for all integers (e.g. Signed
, Unsigned
, and Bool
).
See also isinteger
, trunc
, div
.
Examples
julia> 42 isa Integer
true
julia> 1.0 isa Integer
false
julia> isinteger(1.0)
true
Core.Signed
— TypeSigned <: Integer
Abstract supertype for all signed integers.
Core.Unsigned
— TypeUnsigned <: Integer
Abstract supertype for all unsigned integers.
Built-in unsigned integers are printed in hexadecimal, with prefix 0x
, and can be entered in the same way.
Examples
julia> typemax(UInt8)
0xff
julia> Int(0x00d)
13
julia> unsigned(true)
0x0000000000000001
Base.AbstractIrrational
— TypeAbstractIrrational <: Real
Number type representing an exact irrational value, which is automatically rounded to the correct precision in arithmetic operations with other numeric quantities.
Subtypes MyIrrational <: AbstractIrrational
should implement at least ==(::MyIrrational, ::MyIrrational)
, hash(x::MyIrrational, h::UInt)
, and convert(::Type{F}, x::MyIrrational) where {F <: Union{BigFloat,Float32,Float64}}
.
If a subtype is used to represent values that may occasionally be rational (e.g. a square-root type that represents √n
for integers n
will give a rational result when n
is a perfect square), then it should also implement isinteger
, iszero
, isone
, and ==
with Real
values (since all of these default to false
for AbstractIrrational
types), as well as defining hash
to equal that of the corresponding Rational
.
Concrete number types
Core.Float16
— TypeFloat16 <: AbstractFloat <: Real
16-bit floating point number type (IEEE 754 standard). Binary format is 1 sign, 5 exponent, 10 fraction bits.
Core.Float32
— TypeFloat32 <: AbstractFloat <: Real
32-bit floating point number type (IEEE 754 standard). Binary format is 1 sign, 8 exponent, 23 fraction bits.
The exponent for scientific notation should be entered as lower-case f
, thus 2f3 === 2.0f0 * 10^3 === Float32(2_000)
. For array literals and comprehensions, the element type can be specified before the square brackets: Float32[1,4,9] == Float32[i^2 for i in 1:3]
.
Core.Float64
— TypeFloat64 <: AbstractFloat <: Real
64-bit floating point number type (IEEE 754 standard). Binary format is 1 sign, 11 exponent, 52 fraction bits. See bitstring
, signbit
, exponent
, frexp
, and significand
to access various bits.
This is the default for floating point literals, 1.0 isa Float64
, and for many operations such as 1/2, 2pi, log(2), range(0,90,length=4)
. Unlike integers, this default does not change with Sys.WORD_SIZE
.
The exponent for scientific notation can be entered as e
or E
, thus 2e3 === 2.0E3 === 2.0 * 10^3
. Doing so is strongly preferred over 10^n
because integers overflow, thus 2.0 * 10^19 < 0
but 2e19 > 0
.
Base.MPFR.BigFloat
— TypeBigFloat <: AbstractFloat
Arbitrary precision floating point number type.
Core.Bool
— TypeBool <: Integer
Boolean type, containing the values true
and false
.
Bool
is a kind of number: false
is numerically equal to 0
and true
is numerically equal to 1
. Moreover, false
acts as a multiplicative "strong zero" against NaN
and Inf
:
julia> [true, false] == [1, 0]
true
julia> 42.0 + true
43.0
julia> 0 .* (NaN, Inf, -Inf)
(NaN, NaN, NaN)
julia> false .* (NaN, Inf, -Inf)
(0.0, 0.0, -0.0)
Branches via if
and other conditionals only accept Bool
. There are no "truthy" values in Julia.
Comparisons typically return Bool
, and broadcasted comparisons may return BitArray
instead of an Array{Bool}
.
julia> [1 2 3 4 5] .< pi
1×5 BitMatrix:
1 1 1 0 0
julia> map(>(pi), [1 2 3 4 5])
1×5 Matrix{Bool}:
0 0 0 1 1
Core.Int8
— TypeInt8 <: Signed <: Integer
8-bit signed integer type.
Represents numbers n ∈ -128:127
. Note that such integers overflow without warning, thus typemax(Int8) + Int8(1) < 0
.
Core.UInt8
— TypeUInt8 <: Unsigned <: Integer
8-bit unsigned integer type.
Printed in hexadecimal, thus 0x07 == 7.
Core.Int16
— TypeInt16 <: Signed <: Integer
16-bit signed integer type.
Represents numbers n ∈ -32768:32767
. Note that such integers overflow without warning, thus typemax(Int16) + Int16(1) < 0
.
Core.UInt16
— TypeUInt16 <: Unsigned <: Integer
16-bit unsigned integer type.
Printed in hexadecimal, thus 0x000f == 15.
Core.Int32
— TypeInt32 <: Signed <: Integer
32-bit signed integer type.
Note that such integers overflow without warning, thus typemax(Int32) + Int32(1) < 0
.
Core.UInt32
— TypeUInt32 <: Unsigned <: Integer
32-bit unsigned integer type.
Printed in hexadecimal, thus 0x0000001f == 31.
Core.Int64
— TypeInt64 <: Signed <: Integer
64-bit signed integer type.
Note that such integers overflow without warning, thus typemax(Int64) + Int64(1) < 0
.
Core.UInt64
— TypeUInt64 <: Unsigned <: Integer
64-bit unsigned integer type.
Printed in hexadecimal, thus 0x000000000000003f == 63.
Core.Int128
— TypeInt128 <: Signed <: Integer
128-bit signed integer type.
Note that such integers overflow without warning, thus typemax(Int128) + Int128(1) < 0
.
Core.UInt128
— TypeUInt128 <: Unsigned <: Integer
128-bit unsigned integer type.
Printed in hexadecimal, thus 0x0000000000000000000000000000007f == 127.
Core.Int
— TypeInt
Sys.WORD_SIZE-bit signed integer type, Int <: Signed <: Integer <: Real
.
This is the default type of most integer literals and is an alias for either Int32
or Int64
, depending on Sys.WORD_SIZE
. It is the type returned by functions such as length
, and the standard type for indexing arrays.
Note that integers overflow without warning, thus typemax(Int) + 1 < 0
and 10^19 < 0
. Overflow can be avoided by using BigInt
. Very large integer literals will use a wider type, for instance 10_000_000_000_000_000_000 isa Int128
.
Integer division is div
alias ÷
, whereas /
acting on integers returns Float64
.
Core.UInt
— TypeUInt
Sys.WORD_SIZE-bit unsigned integer type, UInt <: Unsigned <: Integer
.
Like Int
, the alias UInt
may point to either UInt32
or UInt64
, according to the value of Sys.WORD_SIZE
on a given computer.
Printed and parsed in hexadecimal: UInt(15) === 0x000000000000000f
.
Base.GMP.BigInt
— TypeBigInt <: Signed
Arbitrary precision integer type.
Base.Complex
— TypeComplex{T<:Real} <: Number
Complex number type with real and imaginary part of type T
.
ComplexF16
, ComplexF32
and ComplexF64
are aliases for Complex{Float16}
, Complex{Float32}
and Complex{Float64}
respectively.
Base.Rational
— TypeRational{T<:Integer} <: Real
Rational number type, with numerator and denominator of type T
. Rationals are checked for overflow.
Base.Irrational
— TypeIrrational{sym} <: AbstractIrrational
Number type representing an exact irrational value denoted by the symbol sym
, such as π
, ℯ
and γ
.
See also AbstractIrrational
.
Data Formats
Base.digits
— Functiondigits([T<:Integer], n::Integer; base::T = 10, pad::Integer = 1)
Return an array with element type T
(default Int
) of the digits of n
in the given base, optionally padded with zeros to a specified size. More significant digits are at higher indices, such that n == sum(digits[k]*base^(k-1) for k in 1:length(digits))
.
See also ndigits
, digits!
, and for base 2 also bitstring
, count_ones
.
Examples
julia> digits(10)
2-element Vector{Int64}:
0
1
julia> digits(10, base = 2)
4-element Vector{Int64}:
0
1
0
1
julia> digits(-256, base = 10, pad = 5)
5-element Vector{Int64}:
-6
-5
-2
0
0
julia> n = rand(-999:999);
julia> n == evalpoly(13, digits(n, base = 13))
true
Base.digits!
— Functiondigits!(array, n::Integer; base::Integer = 10)
Fills an array of the digits of n
in the given base. More significant digits are at higher indices. If the array length is insufficient, the least significant digits are filled up to the array length. If the array length is excessive, the excess portion is filled with zeros.
Examples
julia> digits!([2, 2, 2, 2], 10, base = 2)
4-element Vector{Int64}:
0
1
0
1
julia> digits!([2, 2, 2, 2, 2, 2], 10, base = 2)
6-element Vector{Int64}:
0
1
0
1
0
0
Base.bitstring
— Functionbitstring(n)
A string giving the literal bit representation of a primitive type (in bigendian order, i.e. most-significant bit first).
See also count_ones
, count_zeros
, digits
.
Examples
julia> bitstring(Int32(4))
"00000000000000000000000000000100"
julia> bitstring(2.2)
"0100000000000001100110011001100110011001100110011001100110011010"
Base.parse
— Functionparse(::Type{SimpleColor}, rgb::String)
An analogue of tryparse(SimpleColor, rgb::String)
(which see), that raises an error instead of returning nothing
.
parse(::Type{Platform}, triplet::AbstractString)
Parses a string platform triplet back into a Platform
object.
parse(type, str; base)
Parse a string as a number. For Integer
types, a base can be specified (the default is 10). For floating-point types, the string is parsed as a decimal floating-point number. Complex
types are parsed from decimal strings of the form "R±Iim"
as a Complex(R,I)
of the requested type; "i"
or "j"
can also be used instead of "im"
, and "R"
or "Iim"
are also permitted. If the string does not contain a valid number, an error is raised.
parse(Bool, str)
requires at least Julia 1.1.
Examples
julia> parse(Int, "1234")
1234
julia> parse(Int, "1234", base = 5)
194
julia> parse(Int, "afc", base = 16)
2812
julia> parse(Float64, "1.2e-3")
0.0012
julia> parse(Complex{Float64}, "3.2e-1 + 4.5im")
0.32 + 4.5im
Base.tryparse
— Functiontryparse(::Type{SimpleColor}, rgb::String)
Attempt to parse rgb
as a SimpleColor
. If rgb
starts with #
and has a length of 7, it is converted into a RGBTuple
-backed SimpleColor
. If rgb
starts with a
-z
, rgb
is interpreted as a color name and converted to a Symbol
-backed SimpleColor
.
Otherwise, nothing
is returned.
Examples
julia> tryparse(SimpleColor, "blue")
SimpleColor(blue)
julia> tryparse(SimpleColor, "#9558b2")
SimpleColor(#9558b2)
julia> tryparse(SimpleColor, "#nocolor")
tryparse(type, str; base)
Like parse
, but returns either a value of the requested type, or nothing
if the string does not contain a valid number.
Base.big
— Functionbig(x)
Convert a number to a maximum precision representation (typically BigInt
or BigFloat
). See BigFloat
for information about some pitfalls with floating-point numbers.
Base.signed
— Functionsigned(x)
Convert a number to a signed integer. If the argument is unsigned, it is reinterpreted as signed without checking for overflow.
signed(T::Integer)
Convert an integer bitstype to the signed type of the same size.
Examples
julia> signed(UInt16)
Int16
julia> signed(UInt64)
Int64
Base.unsigned
— Functionunsigned(T::Integer)
Convert an integer bitstype to the unsigned type of the same size.
Examples
julia> unsigned(Int16)
UInt16
julia> unsigned(UInt64)
UInt64
Base.float
— Methodfloat(x)
Convert a number or array to a floating point data type.
See also: complex
, oftype
, convert
.
Examples
julia> float(1:1000)
1.0:1.0:1000.0
julia> float(typemax(Int32))
2.147483647e9
Base.Math.significand
— Functionsignificand(x)
Extract the significand (a.k.a. mantissa) of a floating-point number. If x
is a non-zero finite number, then the result will be a number of the same type and sign as x
, and whose absolute value is on the interval $[1,2)$. Otherwise x
is returned.
Examples
julia> significand(15.2)
1.9
julia> significand(-15.2)
-1.9
julia> significand(-15.2) * 2^3
-15.2
julia> significand(-Inf), significand(Inf), significand(NaN)
(-Inf, Inf, NaN)
Base.Math.exponent
— Functionexponent(x::Real) -> Int
Return the largest integer y
such that 2^y ≤ abs(x)
. For a normalized floating-point number x
, this corresponds to the exponent of x
.
Throws a DomainError
when x
is zero, infinite, or NaN
. For any other non-subnormal floating-point number x
, this corresponds to the exponent bits of x
.
See also signbit
, significand
, frexp
, issubnormal
, log2
, ldexp
.
Examples
julia> exponent(8)
3
julia> exponent(6.5)
2
julia> exponent(-1//4)
-2
julia> exponent(3.142e-4)
-12
julia> exponent(floatmin(Float32)), exponent(nextfloat(0.0f0))
(-126, -149)
julia> exponent(0.0)
ERROR: DomainError with 0.0:
Cannot be ±0.0.
[...]
Base.complex
— Methodcomplex(r, [i])
Convert real numbers or arrays to complex. i
defaults to zero.
Examples
julia> complex(7)
7 + 0im
julia> complex([1, 2, 3])
3-element Vector{Complex{Int64}}:
1 + 0im
2 + 0im
3 + 0im
Base.bswap
— Functionbswap(n)
Reverse the byte order of n
.
(See also ntoh
and hton
to convert between the current native byte order and big-endian order.)
Examples
julia> a = bswap(0x10203040)
0x40302010
julia> bswap(a)
0x10203040
julia> string(1, base = 2)
"1"
julia> string(bswap(1), base = 2)
"100000000000000000000000000000000000000000000000000000000"
Base.hex2bytes
— Functionhex2bytes(itr)
Given an iterable itr
of ASCII codes for a sequence of hexadecimal digits, returns a Vector{UInt8}
of bytes corresponding to the binary representation: each successive pair of hexadecimal digits in itr
gives the value of one byte in the return vector.
The length of itr
must be even, and the returned array has half of the length of itr
. See also hex2bytes!
for an in-place version, and bytes2hex
for the inverse.
Calling hex2bytes
with iterators producing UInt8
values requires Julia 1.7 or later. In earlier versions, you can collect
the iterator before calling hex2bytes
.
Examples
julia> s = string(12345, base = 16)
"3039"
julia> hex2bytes(s)
2-element Vector{UInt8}:
0x30
0x39
julia> a = b"01abEF"
6-element Base.CodeUnits{UInt8, String}:
0x30
0x31
0x61
0x62
0x45
0x46
julia> hex2bytes(a)
3-element Vector{UInt8}:
0x01
0xab
0xef
Base.hex2bytes!
— Functionhex2bytes!(dest::AbstractVector{UInt8}, itr)
Convert an iterable itr
of bytes representing a hexadecimal string to its binary representation, similar to hex2bytes
except that the output is written in-place to dest
. The length of dest
must be half the length of itr
.
Calling hex2bytes! with iterators producing UInt8 requires version 1.7. In earlier versions, you can collect the iterable before calling instead.
Base.bytes2hex
— Functionbytes2hex(itr) -> String
bytes2hex(io::IO, itr)
Convert an iterator itr
of bytes to its hexadecimal string representation, either returning a String
via bytes2hex(itr)
or writing the string to an io
stream via bytes2hex(io, itr)
. The hexadecimal characters are all lowercase.
Calling bytes2hex
with arbitrary iterators producing UInt8
values requires Julia 1.7 or later. In earlier versions, you can collect
the iterator before calling bytes2hex
.
Examples
julia> a = string(12345, base = 16)
"3039"
julia> b = hex2bytes(a)
2-element Vector{UInt8}:
0x30
0x39
julia> bytes2hex(b)
"3039"
General Number Functions and Constants
Base.one
— Functionone(x)
one(T::Type)
Return a multiplicative identity for x
: a value such that one(x)*x == x*one(x) == x
. If the multiplicative identity can be deduced from the type alone, then a type may be given as an argument to one
(e.g. one(Int)
will work because the multiplicative identity is the same for all instances of Int
, but one(Matrix{Int})
is not defined because matrices of different shapes have different multiplicative identities.)
If possible, one(x)
returns a value of the same type as x
, and one(T)
returns a value of type T
. However, this may not be the case for types representing dimensionful quantities (e.g. time in days), since the multiplicative identity must be dimensionless. In that case, one(x)
should return an identity value of the same precision (and shape, for matrices) as x
.
If you want a quantity that is of the same type as x
, or of type T
, even if x
is dimensionful, use oneunit
instead.
See also the identity
function, and I
in LinearAlgebra
for the identity matrix.
Examples
julia> one(3.7)
1.0
julia> one(Int)
1
julia> import Dates; one(Dates.Day(1))
1
Base.oneunit
— Functiononeunit(x::T)
oneunit(T::Type)
Return T(one(x))
, where T
is either the type of the argument, or the argument itself in cases where the oneunit
can be deduced from the type alone. This differs from one
for dimensionful quantities: one
is dimensionless (a multiplicative identity) while oneunit
is dimensionful (of the same type as x
, or of type T
).
Examples
julia> oneunit(3.7)
1.0
julia> import Dates; oneunit(Dates.Day)
1 day
Base.zero
— Functionzero(x)
zero(::Type)
Get the additive identity element for x
. If the additive identity can be deduced from the type alone, then a type may be given as an argument to zero
.
For example, zero(Int)
will work because the additive identity is the same for all instances of Int
, but zero(Vector{Int})
is not defined because vectors of different lengths have different additive identities.
See also iszero
, one
, oneunit
, oftype
.
Examples
julia> zero(1)
0
julia> zero(big"2.0")
0.0
julia> zero(rand(2,2))
2×2 Matrix{Float64}:
0.0 0.0
0.0 0.0
Base.im
— Constantim
The imaginary unit.
See also: imag
, angle
, complex
.
Examples
julia> im * im
-1 + 0im
julia> (2.0 + 3im)^2
-5.0 + 12.0im
Base.MathConstants.pi
— Constantπ
pi
The constant pi.
Unicode π
can be typed by writing \pi
then pressing tab in the Julia REPL, and in many editors.
See also: sinpi
, sincospi
, deg2rad
.
Examples
julia> pi
π = 3.1415926535897...
julia> 1/2pi
0.15915494309189535
Base.MathConstants.ℯ
— Constantℯ
e
The constant ℯ.
Unicode ℯ
can be typed by writing \euler
and pressing tab in the Julia REPL, and in many editors.
Examples
julia> ℯ
ℯ = 2.7182818284590...
julia> log(ℯ)
1
julia> ℯ^(im)π ≈ -1
true
Base.MathConstants.catalan
— Constantcatalan
Catalan's constant.
Examples
julia> Base.MathConstants.catalan
catalan = 0.9159655941772...
julia> sum(log(x)/(1+x^2) for x in 1:0.01:10^6) * 0.01
0.9159466120554123
Base.MathConstants.eulergamma
— Constantγ
eulergamma
Euler's constant.
Examples
julia> Base.MathConstants.eulergamma
γ = 0.5772156649015...
julia> dx = 10^-6;
julia> sum(-exp(-x) * log(x) for x in dx:dx:100) * dx
0.5772078382499133
Base.MathConstants.golden
— Constantφ
golden
The golden ratio.
Examples
julia> Base.MathConstants.golden
φ = 1.6180339887498...
julia> (2ans - 1)^2 ≈ 5
true
Base.Inf
— ConstantInf, Inf64
Positive infinity of type Float64
.
See also: isfinite
, typemax
, NaN
, Inf32
.
Examples
julia> π/0
Inf
julia> +1.0 / -0.0
-Inf
julia> ℯ^-Inf
0.0
Base.Inf64
— ConstantInf, Inf64
Positive infinity of type Float64
.
See also: isfinite
, typemax
, NaN
, Inf32
.
Examples
julia> π/0
Inf
julia> +1.0 / -0.0
-Inf
julia> ℯ^-Inf
0.0
Base.Inf32
— ConstantInf32
Positive infinity of type Float32
.
Base.Inf16
— ConstantInf16
Positive infinity of type Float16
.
Base.NaN
— ConstantNaN, NaN64
A not-a-number value of type Float64
.
See also: isnan
, missing
, NaN32
, Inf
.
Examples
julia> 0/0
NaN
julia> Inf - Inf
NaN
julia> NaN == NaN, isequal(NaN, NaN), isnan(NaN)
(false, true, true)
Base.NaN64
— ConstantNaN, NaN64
A not-a-number value of type Float64
.
See also: isnan
, missing
, NaN32
, Inf
.
Examples
julia> 0/0
NaN
julia> Inf - Inf
NaN
julia> NaN == NaN, isequal(NaN, NaN), isnan(NaN)
(false, true, true)
Base.NaN32
— ConstantBase.NaN16
— ConstantBase.issubnormal
— Functionissubnormal(f) -> Bool
Test whether a floating point number is subnormal.
An IEEE floating point number is subnormal when its exponent bits are zero and its significand is not zero.
Examples
julia> floatmin(Float32)
1.1754944f-38
julia> issubnormal(1.0f-37)
false
julia> issubnormal(1.0f-38)
true
Base.isfinite
— Functionisfinite(f) -> Bool
Test whether a number is finite.
Examples
julia> isfinite(5)
true
julia> isfinite(NaN32)
false
Base.isinf
— FunctionBase.isnan
— Functionisnan(f) -> Bool
Test whether a number value is a NaN, an indeterminate value which is neither an infinity nor a finite number ("not a number").
Base.iszero
— Functioniszero(x)
Return true
if x == zero(x)
; if x
is an array, this checks whether all of the elements of x
are zero.
See also: isone
, isinteger
, isfinite
, isnan
.
Examples
julia> iszero(0.0)
true
julia> iszero([1, 9, 0])
false
julia> iszero([false, 0, 0])
true
Base.isone
— Functionisone(x)
Return true
if x == one(x)
; if x
is an array, this checks whether x
is an identity matrix.
Examples
julia> isone(1.0)
true
julia> isone([1 0; 0 2])
false
julia> isone([1 0; 0 true])
true
Base.nextfloat
— Functionnextfloat(x::AbstractFloat)
Return the smallest floating point number y
of the same type as x
such x < y
. If no such y
exists (e.g. if x
is Inf
or NaN
), then return x
.
See also: prevfloat
, eps
, issubnormal
.
nextfloat(x::AbstractFloat, n::Integer)
The result of n
iterative applications of nextfloat
to x
if n >= 0
, or -n
applications of prevfloat
if n < 0
.
Base.prevfloat
— Functionprevfloat(x::AbstractFloat)
Return the largest floating point number y
of the same type as x
such y < x
. If no such y
exists (e.g. if x
is -Inf
or NaN
), then return x
.
prevfloat(x::AbstractFloat, n::Integer)
The result of n
iterative applications of prevfloat
to x
if n >= 0
, or -n
applications of nextfloat
if n < 0
.
Base.isinteger
— Functionisinteger(x) -> Bool
Test whether x
is numerically equal to some integer.
Examples
julia> isinteger(4.0)
true
Base.isreal
— Functionisreal(x) -> Bool
Test whether x
or all its elements are numerically equal to some real number including infinities and NaNs. isreal(x)
is true if isequal(x, real(x))
is true.
Examples
julia> isreal(5.)
true
julia> isreal(1 - 3im)
false
julia> isreal(Inf + 0im)
true
julia> isreal([4.; complex(0,1)])
false
Core.Float32
— MethodFloat32(x [, mode::RoundingMode])
Create a Float32
from x
. If x
is not exactly representable then mode
determines how x
is rounded.
Examples
julia> Float32(1/3, RoundDown)
0.3333333f0
julia> Float32(1/3, RoundUp)
0.33333334f0
See RoundingMode
for available rounding modes.
Core.Float64
— MethodFloat64(x [, mode::RoundingMode])
Create a Float64
from x
. If x
is not exactly representable then mode
determines how x
is rounded.
Examples
julia> Float64(pi, RoundDown)
3.141592653589793
julia> Float64(pi, RoundUp)
3.1415926535897936
See RoundingMode
for available rounding modes.
Base.Rounding.rounding
— Functionrounding(T)
Get the current floating point rounding mode for type T
, controlling the rounding of basic arithmetic functions (+
, -
, *
, /
and sqrt
) and type conversion.
See RoundingMode
for available modes.
Base.Rounding.setrounding
— Methodsetrounding(T, mode)
Set the rounding mode of floating point type T
, controlling the rounding of basic arithmetic functions (+
, -
, *
, /
and sqrt
) and type conversion. Other numerical functions may give incorrect or invalid values when using rounding modes other than the default RoundNearest
.
Note that this is currently only supported for T == BigFloat
.
This function is not thread-safe. It will affect code running on all threads, but its behavior is undefined if called concurrently with computations that use the setting.
Base.Rounding.setrounding
— Methodsetrounding(f::Function, T, mode)
Change the rounding mode of floating point type T
for the duration of f
. It is logically equivalent to:
old = rounding(T)
setrounding(T, mode)
f()
setrounding(T, old)
See RoundingMode
for available rounding modes.
Base.Rounding.get_zero_subnormals
— Functionget_zero_subnormals() -> Bool
Return false
if operations on subnormal floating-point values ("denormals") obey rules for IEEE arithmetic, and true
if they might be converted to zeros.
This function only affects the current thread.
Base.Rounding.set_zero_subnormals
— Functionset_zero_subnormals(yes::Bool) -> Bool
If yes
is false
, subsequent floating-point operations follow rules for IEEE arithmetic on subnormal values ("denormals"). Otherwise, floating-point operations are permitted (but not required) to convert subnormal inputs or outputs to zero. Returns true
unless yes==true
but the hardware does not support zeroing of subnormal numbers.
set_zero_subnormals(true)
can speed up some computations on some hardware. However, it can break identities such as (x-y==0) == (x==y)
.
This function only affects the current thread.
Integers
Base.count_ones
— Functioncount_ones(x::Integer) -> Integer
Number of ones in the binary representation of x
.
Examples
julia> count_ones(7)
3
julia> count_ones(Int32(-1))
32
Base.count_zeros
— Functioncount_zeros(x::Integer) -> Integer
Number of zeros in the binary representation of x
.
Examples
julia> count_zeros(Int32(2 ^ 16 - 1))
16
julia> count_zeros(-1)
0
Base.leading_zeros
— Functionleading_zeros(x::Integer) -> Integer
Number of zeros leading the binary representation of x
.
Examples
julia> leading_zeros(Int32(1))
31
Base.leading_ones
— Functionleading_ones(x::Integer) -> Integer
Number of ones leading the binary representation of x
.
Examples
julia> leading_ones(UInt32(2 ^ 32 - 2))
31
Base.trailing_zeros
— Functiontrailing_zeros(x::Integer) -> Integer
Number of zeros trailing the binary representation of x
.
Examples
julia> trailing_zeros(2)
1
Base.trailing_ones
— Functiontrailing_ones(x::Integer) -> Integer
Number of ones trailing the binary representation of x
.
Examples
julia> trailing_ones(3)
2
Base.isodd
— Functionisodd(x::Number) -> Bool
Return true
if x
is an odd integer (that is, an integer not divisible by 2), and false
otherwise.
Non-Integer
arguments require Julia 1.7 or later.
Examples
julia> isodd(9)
true
julia> isodd(10)
false
Base.iseven
— Functioniseven(x::Number) -> Bool
Return true
if x
is an even integer (that is, an integer divisible by 2), and false
otherwise.
Non-Integer
arguments require Julia 1.7 or later.
Examples
julia> iseven(9)
false
julia> iseven(10)
true
Core.@int128_str
— Macro@int128_str str
Parse str
as an Int128
. Throw an ArgumentError
if the string is not a valid integer.
Examples
julia> int128"123456789123"
123456789123
julia> int128"123456789123.4"
ERROR: LoadError: ArgumentError: invalid base 10 digit '.' in "123456789123.4"
[...]
Core.@uint128_str
— Macro@uint128_str str
Parse str
as an UInt128
. Throw an ArgumentError
if the string is not a valid integer.
Examples
julia> uint128"123456789123"
0x00000000000000000000001cbe991a83
julia> uint128"-123456789123"
ERROR: LoadError: ArgumentError: invalid base 10 digit '-' in "-123456789123"
[...]
BigFloats and BigInts
The BigFloat
and BigInt
types implements arbitrary-precision floating point and integer arithmetic, respectively. For BigFloat
the GNU MPFR library is used, and for BigInt
the GNU Multiple Precision Arithmetic Library (GMP) is used.
Base.MPFR.BigFloat
— MethodBigFloat(x::Union{Real, AbstractString} [, rounding::RoundingMode=rounding(BigFloat)]; [precision::Integer=precision(BigFloat)])
Create an arbitrary precision floating point number from x
, with precision precision
. The rounding
argument specifies the direction in which the result should be rounded if the conversion cannot be done exactly. If not provided, these are set by the current global values.
BigFloat(x::Real)
is the same as convert(BigFloat,x)
, except if x
itself is already BigFloat
, in which case it will return a value with the precision set to the current global precision; convert
will always return x
.
BigFloat(x::AbstractString)
is identical to parse
. This is provided for convenience since decimal literals are converted to Float64
when parsed, so BigFloat(2.1)
may not yield what you expect.
See also:
precision
as a keyword argument requires at least Julia 1.1. In Julia 1.0 precision
is the second positional argument (BigFloat(x, precision)
).
Examples
julia> BigFloat(2.1) # 2.1 here is a Float64
2.100000000000000088817841970012523233890533447265625
julia> BigFloat("2.1") # the closest BigFloat to 2.1
2.099999999999999999999999999999999999999999999999999999999999999999999999999986
julia> BigFloat("2.1", RoundUp)
2.100000000000000000000000000000000000000000000000000000000000000000000000000021
julia> BigFloat("2.1", RoundUp, precision=128)
2.100000000000000000000000000000000000007
Base.precision
— Functionprecision(num::AbstractFloat; base::Integer=2)
precision(T::Type; base::Integer=2)
Get the precision of a floating point number, as defined by the effective number of bits in the significand, or the precision of a floating-point type T
(its current default, if T
is a variable-precision type like BigFloat
).
If base
is specified, then it returns the maximum corresponding number of significand digits in that base.
The base
keyword requires at least Julia 1.8.
Base.MPFR.setprecision
— Functionsetprecision(f::Function, [T=BigFloat,] precision::Integer; base=2)
Change the T
arithmetic precision (in the given base
) for the duration of f
. It is logically equivalent to:
old = precision(BigFloat)
setprecision(BigFloat, precision)
f()
setprecision(BigFloat, old)
Often used as setprecision(T, precision) do ... end
Note: nextfloat()
, prevfloat()
do not use the precision mentioned by setprecision
.
The base
keyword requires at least Julia 1.8.
setprecision([T=BigFloat,] precision::Int; base=2)
Set the precision (in bits, by default) to be used for T
arithmetic. If base
is specified, then the precision is the minimum required to give at least precision
digits in the given base
.
This function is not thread-safe. It will affect code running on all threads, but its behavior is undefined if called concurrently with computations that use the setting.
The base
keyword requires at least Julia 1.8.
Base.GMP.BigInt
— MethodBigInt(x)
Create an arbitrary precision integer. x
may be an Int
(or anything that can be converted to an Int
). The usual mathematical operators are defined for this type, and results are promoted to a BigInt
.
Instances can be constructed from strings via parse
, or using the big
string literal.
Examples
julia> parse(BigInt, "42")
42
julia> big"313"
313
julia> BigInt(10)^19
10000000000000000000
Core.@big_str
— Macro@big_str str
Parse a string into a BigInt
or BigFloat
, and throw an ArgumentError
if the string is not a valid number. For integers _
is allowed in the string as a separator.
Examples
julia> big"123_456"
123456
julia> big"7891.5"
7891.5
julia> big"_"
ERROR: ArgumentError: invalid number format _ for BigInt or BigFloat
[...]
Using @big_str
for constructing BigFloat
values may not result in the behavior that might be naively expected: as a macro, @big_str
obeys the global precision (setprecision
) and rounding mode (setrounding
) settings as they are at load time. Thus, a function like () -> precision(big"0.3")
returns a constant whose value depends on the value of the precision at the point when the function is defined, not at the precision at the time when the function is called.