Iteration utilities
Base.Iterators.Stateful
— TypeStateful(itr)
There are several different ways to think about this iterator wrapper:
- It provides a mutable wrapper around an iterator and its iteration state.
- It turns an iterator-like abstraction into a
Channel
-like abstraction. - It's an iterator that mutates to become its own rest iterator whenever an item is produced.
Stateful
provides the regular iterator interface. Like other mutable iterators (e.g. Base.Channel
), if iteration is stopped early (e.g. by a break
in a for
loop), iteration can be resumed from the same spot by continuing to iterate over the same iterator object (in contrast, an immutable iterator would restart from the beginning).
Examples
julia> a = Iterators.Stateful("abcdef");
julia> isempty(a)
false
julia> popfirst!(a)
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
julia> collect(Iterators.take(a, 3))
3-element Vector{Char}:
'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)
'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase)
'd': ASCII/Unicode U+0064 (category Ll: Letter, lowercase)
julia> collect(a)
2-element Vector{Char}:
'e': ASCII/Unicode U+0065 (category Ll: Letter, lowercase)
'f': ASCII/Unicode U+0066 (category Ll: Letter, lowercase)
julia> Iterators.reset!(a); popfirst!(a)
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
julia> Iterators.reset!(a, "hello"); popfirst!(a)
'h': ASCII/Unicode U+0068 (category Ll: Letter, lowercase)
julia> a = Iterators.Stateful([1,1,1,2,3,4]);
julia> for x in a; x == 1 || break; end
julia> peek(a)
3
julia> sum(a) # Sum the remaining elements
7
Base.Iterators.zip
— Functionzip(iters...)
Run multiple iterators at the same time, until any of them is exhausted. The value type of the zip
iterator is a tuple of values of its subiterators.
zip
orders the calls to its subiterators in such a way that stateful iterators will not advance when another iterator finishes in the current iteration.
zip()
with no arguments yields an infinite iterator of empty tuples.
See also: enumerate
, Base.splat
.
Examples
julia> a = 1:5
1:5
julia> b = ["e","d","b","c","a"]
5-element Vector{String}:
"e"
"d"
"b"
"c"
"a"
julia> c = zip(a,b)
zip(1:5, ["e", "d", "b", "c", "a"])
julia> length(c)
5
julia> first(c)
(1, "e")
Base.Iterators.enumerate
— Functionenumerate(iter)
An iterator that yields (i, x)
where i
is a counter starting at 1, and x
is the i
th value from the given iterator. It's useful when you need not only the values x
over which you are iterating, but also the number of iterations so far.
Note that i
may not be valid for indexing iter
, or may index a different element. This will happen if iter
has indices that do not start at 1, and may happen for strings, dictionaries, etc. See the pairs(IndexLinear(), iter)
method if you want to ensure that i
is an index.
Examples
julia> a = ["a", "b", "c"];
julia> for (index, value) in enumerate(a)
println("$index $value")
end
1 a
2 b
3 c
julia> str = "naïve";
julia> for (i, val) in enumerate(str)
print("i = ", i, ", val = ", val, ", ")
try @show(str[i]) catch e println(e) end
end
i = 1, val = n, str[i] = 'n'
i = 2, val = a, str[i] = 'a'
i = 3, val = ï, str[i] = 'ï'
i = 4, val = v, StringIndexError("naïve", 4)
i = 5, val = e, str[i] = 'v'
Base.Iterators.rest
— Functionrest(iter, state)
An iterator that yields the same elements as iter
, but starting at the given state
.
See also: Iterators.drop
, Iterators.peel
, Base.rest
.
Examples
julia> collect(Iterators.rest([1,2,3,4], 2))
3-element Vector{Int64}:
2
3
4
Base.Iterators.countfrom
— Functioncountfrom(start=1, step=1)
An iterator that counts forever, starting at start
and incrementing by step
.
Examples
julia> for v in Iterators.countfrom(5, 2)
v > 10 && break
println(v)
end
5
7
9
Base.Iterators.take
— Functiontake(iter, n)
An iterator that generates at most the first n
elements of iter
.
See also: drop
, peel
, first
, Base.take!
.
Examples
julia> a = 1:2:11
1:2:11
julia> collect(a)
6-element Vector{Int64}:
1
3
5
7
9
11
julia> collect(Iterators.take(a,3))
3-element Vector{Int64}:
1
3
5
Base.Iterators.takewhile
— Functiontakewhile(pred, iter)
An iterator that generates element from iter
as long as predicate pred
is true, afterwards, drops every element.
This function requires at least Julia 1.4.
Examples
julia> s = collect(1:5)
5-element Vector{Int64}:
1
2
3
4
5
julia> collect(Iterators.takewhile(<(3),s))
2-element Vector{Int64}:
1
2
Base.Iterators.drop
— Functiondrop(iter, n)
An iterator that generates all but the first n
elements of iter
.
Examples
julia> a = 1:2:11
1:2:11
julia> collect(a)
6-element Vector{Int64}:
1
3
5
7
9
11
julia> collect(Iterators.drop(a,4))
2-element Vector{Int64}:
9
11
Base.Iterators.dropwhile
— Functiondropwhile(pred, iter)
An iterator that drops element from iter
as long as predicate pred
is true, afterwards, returns every element.
This function requires at least Julia 1.4.
Examples
julia> s = collect(1:5)
5-element Vector{Int64}:
1
2
3
4
5
julia> collect(Iterators.dropwhile(<(3),s))
3-element Vector{Int64}:
3
4
5
Base.Iterators.cycle
— Functioncycle(iter)
An iterator that cycles through iter
forever. If iter
is empty, so is cycle(iter)
.
See also: Iterators.repeated
, Base.repeat
.
Examples
julia> for (i, v) in enumerate(Iterators.cycle("hello"))
print(v)
i > 10 && break
end
hellohelloh
Base.Iterators.repeated
— Functionrepeated(x[, n::Int])
An iterator that generates the value x
forever. If n
is specified, generates x
that many times (equivalent to take(repeated(x), n)
).
See also: Iterators.cycle
, Base.repeat
.
Examples
julia> a = Iterators.repeated([1 2], 4);
julia> collect(a)
4-element Vector{Matrix{Int64}}:
[1 2]
[1 2]
[1 2]
[1 2]
Base.Iterators.product
— Functionproduct(iters...)
Return an iterator over the product of several iterators. Each generated element is a tuple whose i
th element comes from the i
th argument iterator. The first iterator changes the fastest.
See also: zip
, Iterators.flatten
.
Examples
julia> collect(Iterators.product(1:2, 3:5))
2×3 Matrix{Tuple{Int64, Int64}}:
(1, 3) (1, 4) (1, 5)
(2, 3) (2, 4) (2, 5)
julia> ans == [(x,y) for x in 1:2, y in 3:5] # collects a generator involving Iterators.product
true
Base.Iterators.flatten
— Functionflatten(iter)
Given an iterator that yields iterators, return an iterator that yields the elements of those iterators. Put differently, the elements of the argument iterator are concatenated.
Examples
julia> collect(Iterators.flatten((1:2, 8:9)))
4-element Vector{Int64}:
1
2
8
9
julia> [(x,y) for x in 0:1 for y in 'a':'c'] # collects generators involving Iterators.flatten
6-element Vector{Tuple{Int64, Char}}:
(0, 'a')
(0, 'b')
(0, 'c')
(1, 'a')
(1, 'b')
(1, 'c')
Base.Iterators.flatmap
— FunctionIterators.flatmap(f, iterators...)
Equivalent to flatten(map(f, iterators...))
.
See also Iterators.flatten
, Iterators.map
.
This function was added in Julia 1.9.
Examples
julia> Iterators.flatmap(n -> -n:2:n, 1:3) |> collect
9-element Vector{Int64}:
-1
1
-2
0
2
-3
-1
1
3
julia> stack(n -> -n:2:n, 1:3)
ERROR: DimensionMismatch: stack expects uniform slices, got axes(x) == (1:3,) while first had (1:2,)
[...]
julia> Iterators.flatmap(n -> (-n, 10n), 1:2) |> collect
4-element Vector{Int64}:
-1
10
-2
20
julia> ans == vec(stack(n -> (-n, 10n), 1:2))
true
Base.Iterators.partition
— Functionpartition(collection, n)
Iterate over a collection n
elements at a time.
Examples
julia> collect(Iterators.partition([1,2,3,4,5], 2))
3-element Vector{SubArray{Int64, 1, Vector{Int64}, Tuple{UnitRange{Int64}}, true}}:
[1, 2]
[3, 4]
[5]
Base.Iterators.map
— FunctionIterators.map(f, iterators...)
Create a lazy mapping. This is another syntax for writing (f(args...) for args in zip(iterators...))
.
This function requires at least Julia 1.6.
Examples
julia> collect(Iterators.map(x -> x^2, 1:3))
3-element Vector{Int64}:
1
4
9
Base.Iterators.filter
— FunctionIterators.filter(flt, itr)
Given a predicate function flt
and an iterable object itr
, return an iterable object which upon iteration yields the elements x
of itr
that satisfy flt(x)
. The order of the original iterator is preserved.
This function is lazy; that is, it is guaranteed to return in $Θ(1)$ time and use $Θ(1)$ additional space, and flt
will not be called by an invocation of filter
. Calls to flt
will be made when iterating over the returned iterable object. These calls are not cached and repeated calls will be made when reiterating.
See Base.filter
for an eager implementation of filtering for arrays.
Examples
julia> f = Iterators.filter(isodd, [1, 2, 3, 4, 5])
Base.Iterators.Filter{typeof(isodd), Vector{Int64}}(isodd, [1, 2, 3, 4, 5])
julia> foreach(println, f)
1
3
5
julia> [x for x in [1, 2, 3, 4, 5] if isodd(x)] # collects a generator over Iterators.filter
3-element Vector{Int64}:
1
3
5
Base.Iterators.accumulate
— FunctionIterators.accumulate(f, itr; [init])
Given a 2-argument function f
and an iterator itr
, return a new iterator that successively applies f
to the previous value and the next element of itr
.
This is effectively a lazy version of Base.accumulate
.
Keyword argument init
is added in Julia 1.5.
Examples
julia> a = Iterators.accumulate(+, [1,2,3,4]);
julia> foreach(println, a)
1
3
6
10
julia> b = Iterators.accumulate(/, (2, 5, 2, 5); init = 100);
julia> collect(b)
4-element Vector{Float64}:
50.0
10.0
5.0
1.0
Base.Iterators.reverse
— FunctionIterators.reverse(itr)
Given an iterator itr
, then reverse(itr)
is an iterator over the same collection but in the reverse order. This iterator is "lazy" in that it does not make a copy of the collection in order to reverse it; see Base.reverse
for an eager implementation.
(By default, this returns an Iterators.Reverse
object wrapping itr
, which is iterable if the corresponding iterate
methods are defined, but some itr
types may implement more specialized Iterators.reverse
behaviors.)
Not all iterator types T
support reverse-order iteration. If T
doesn't, then iterating over Iterators.reverse(itr::T)
will throw a MethodError
because of the missing iterate
methods for Iterators.Reverse{T}
. (To implement these methods, the original iterator itr::T
can be obtained from an r::Iterators.Reverse{T}
object by r.itr
; more generally, one can use Iterators.reverse(r)
.)
Examples
julia> foreach(println, Iterators.reverse(1:5))
5
4
3
2
1
Base.Iterators.only
— Functiononly(x)
Return the one and only element of collection x
, or throw an ArgumentError
if the collection has zero or multiple elements.
This method requires at least Julia 1.4.
Examples
julia> only(["a"])
"a"
julia> only("a")
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
julia> only(())
ERROR: ArgumentError: Tuple contains 0 elements, must contain exactly 1 element
Stacktrace:
[...]
julia> only(('a', 'b'))
ERROR: ArgumentError: Tuple contains 2 elements, must contain exactly 1 element
Stacktrace:
[...]
Base.Iterators.peel
— Functionpeel(iter)
Returns the first element and an iterator over the remaining elements.
If the iterator is empty return nothing
(like iterate
).
Prior versions throw a BoundsError if the iterator is empty.
See also: Iterators.drop
, Iterators.take
.
Examples
julia> (a, rest) = Iterators.peel("abc");
julia> a
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
julia> collect(rest)
2-element Vector{Char}:
'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)
'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase)