Collections and Data Structures¶
Iteration¶
Sequential iteration is implemented by the methods start(), done(), and
next(). The general for loop:
fori=I# or "for i in I"# bodyendis translated into:
state=start(I)while!done(I,state)(i,state)=next(I,state)# bodyendThe state object may be anything, and should be chosen appropriately for
each iterable type. See the manual section on the iteration interface for more details about defining a custom iterable
type.
start(iter) → state¶Get initial iteration state for an iterable object
done(iter, state) → Bool¶Test whether we are done iterating
next(iter, state) → item, state¶For a given iterable object and iteration state, return the current item and the next iteration state
zip(iters...)¶For a set of iterable objects, returns an iterable of tuples, where the
ith tuple contains theith component of each input iterable.Note that
zip()is its own inverse:collect(zip(zip(a...)...))==collect(a).
enumerate(iter)¶An iterator that yields
(i,x)whereiis an index starting at 1, andxis theith value from the given iterator. It’s useful when you need not only the valuesxover which you are iterating, but also the indexiof the iterations.julia>a=["a","b","c"];julia>for(index,value)inenumerate(a)println("$index$value")end1a2b3c
rest(iter, state)¶An iterator that yields the same elements as
iter, but starting at the givenstate.
countfrom(start=1, step=1)¶An iterator that counts forever, starting at
startand incrementing bystep.
take(iter, n)¶An iterator that generates at most the first
nelements ofiter.
drop(iter, n)¶An iterator that generates all but the first
nelements ofiter.
cycle(iter)¶An iterator that cycles through
iterforever.
repeated(x[, n::Int])¶An iterator that generates the value
xforever. Ifnis specified, generatesxthat many times (equivalent totake(repeated(x),n)).
Fully implemented by:
General Collections¶
isempty(collection) → Bool¶Determine whether a collection is empty (has no elements).
julia>isempty([])truejulia>isempty([123])false
empty!(collection) → collection¶Remove all elements from a
collection.
length(collection) → Integer¶For ordered, indexable collections, the maximum index
ifor whichgetindex(collection,i)is valid. For unordered collections, the number of elements.
endof(collection) → Integer¶Returns the last index of the collection.
julia>endof([1,2,4])3
Fully implemented by:
Iterable Collections¶
in(item, collection) → Bool¶∈(item, collection) → Bool¶∋(collection, item) → Bool¶∉(item, collection) → Bool¶∌(collection, item) → Bool¶Determine whether an item is in the given collection, in the sense that it is
==to one of the values generated by iterating over the collection. Some collections need a slightly different definition; for exampleSets check whether the itemisequal()to one of the elements.Dicts look for(key,value)pairs, and the key is compared usingisequal(). To test for the presence of a key in a dictionary, usehaskey()orkinkeys(dict).
eltype(type)¶Determine the type of the elements generated by iterating a collection of the given
type. For associative collection types, this will be aPair{KeyType,ValType}. The definitioneltype(x)=eltype(typeof(x))is provided for convenience so that instances can be passed instead of types. However the form that accepts a type argument should be defined for new types.
indexin(a, b)¶Returns a vector containing the highest index in
bfor each value inathat is a member ofb. The output vector contains 0 whereverais not a member ofb.
findin(a, b)¶Returns the indices of elements in collection
athat appear in collectionb
unique(itr[, dim])¶Returns an array containing only the unique elements of the iterable
itr, in the order that the first of each set of equivalent elements originally appears. Ifdimis specified, returns unique regions of the arrayitralongdim.
reduce(op, v0, itr)¶Reduce the given collection
ìtrwith the given binary operatorop.v0must be a neutral element foropthat will be returned for empty collections. It is unspecified whetherv0is used for non-empty collections.Reductions for certain commonly-used operators have special implementations which should be used instead:
maximum(itr),minimum(itr),sum(itr),prod(itr),any(itr),all(itr).The associativity of the reduction is implementation dependent. This means that you can’t use non-associative operations like
-because it is undefined whetherreduce(-,[1,2,3])should be evaluated as(1-2)-3or1-(2-3). Usefoldlorfoldrinstead for guaranteed left or right associativity.Some operations accumulate error, and parallelism will also be easier if the reduction can be executed in groups. Future versions of Julia might change the algorithm. Note that the elements are not reordered if you use an ordered collection.
reduce(op, itr)Like
reduce(op,v0,itr). This cannot be used with empty collections, except for some special cases (e.g. whenopis one of+,*,max,min,&,|) when Julia can determine the neutral element ofop.
foldl(op, v0, itr)¶Like
reduce(), but with guaranteed left associativity.v0will be used exactly once.
foldl(op, itr)Like
foldl(op,v0,itr), but using the first element ofitrasv0. In general, this cannot be used with empty collections (seereduce(op,itr)).
foldr(op, v0, itr)¶Like
reduce(), but with guaranteed right associativity.v0will be used exactly once.
foldr(op, itr)Like
foldr(op,v0,itr), but using the last element ofitrasv0. In general, this cannot be used with empty collections (seereduce(op,itr)).
maximum(itr)¶Returns the largest element in a collection.
maximum(A, dims)Compute the maximum value of an array over the given dimensions.
maximum!(r, A)¶Compute the maximum value of
Aover the singleton dimensions ofr, and write results tor.
minimum(itr)¶Returns the smallest element in a collection.
minimum(A, dims)Compute the minimum value of an array over the given dimensions.
minimum!(r, A)¶Compute the minimum value of
Aover the singleton dimensions ofr, and write results tor.
extrema(itr)¶Compute both the minimum and maximum element in a single pass, and return them as a 2-tuple.
indmax(itr) → Integer¶Returns the index of the maximum element in a collection.
indmin(itr) → Integer¶Returns the index of the minimum element in a collection.
findmax(itr) -> (x, index)¶Returns the maximum element and its index.
findmax(A, dims) -> (maxval, index)For an array input, returns the value and index of the maximum over the given dimensions.
findmin(itr) -> (x, index)¶Returns the minimum element and its index.
findmin(A, dims) -> (minval, index)For an array input, returns the value and index of the minimum over the given dimensions.
findmax!(rval, rind, A, [init=true]) -> (maxval, index)¶Find the maximum of
Aand the corresponding linear index along singleton dimensions ofrvalandrind, and store the results inrvalandrind.
findmin!(rval, rind, A, [init=true]) -> (minval, index)¶Find the minimum of
Aand the corresponding linear index along singleton dimensions ofrvalandrind, and store the results inrvalandrind.
maxabs(itr)¶Compute the maximum absolute value of a collection of values.
maxabs(A, dims)Compute the maximum absolute values over given dimensions.
maxabs!(r, A)¶Compute the maximum absolute values over the singleton dimensions of
r, and write values tor.
minabs(itr)¶Compute the minimum absolute value of a collection of values.
minabs(A, dims)Compute the minimum absolute values over given dimensions.
minabs!(r, A)¶Compute the minimum absolute values over the singleton dimensions of
r, and write values tor.
sum(itr)¶Returns the sum of all elements in a collection.
sum(A, dims)Sum elements of an array over the given dimensions.
sum!(r, A)¶Sum elements of
Aover the singleton dimensions ofr, and write results tor.
sum(f, itr)Sum the results of calling function
fon each element ofitr.
sumabs(itr)¶Sum absolute values of all elements in a collection. This is equivalent to
sum(abs(itr))but faster.
sumabs(A, dims)Sum absolute values of elements of an array over the given dimensions.
sumabs!(r, A)¶Sum absolute values of elements of
Aover the singleton dimensions ofr, and write results tor.
sumabs2(itr)¶Sum squared absolute values of all elements in a collection. This is equivalent to
sum(abs2(itr))but faster.
sumabs2(A, dims)Sum squared absolute values of elements of an array over the given dimensions.
sumabs2!(r, A)¶Sum squared absolute values of elements of
Aover the singleton dimensions ofr, and write results tor.
prod(itr)¶Returns the product of all elements of a collection.
prod(A, dims)Multiply elements of an array over the given dimensions.
prod!(r, A)¶Multiply elements of
Aover the singleton dimensions ofr, and write results tor.
any(itr) → Bool¶Test whether any elements of a boolean collection are
true.
any(A, dims)Test whether any values along the given dimensions of an array are
true.
any!(r, A)¶Test whether any values in
Aalong the singleton dimensions ofraretrue, and write results tor.
all(itr) → Bool¶Test whether all elements of a boolean collection are
true.
all(A, dims)Test whether all values along the given dimensions of an array are
true.
all!(r, A)¶Test whether all values in
Aalong the singleton dimensions ofraretrue, and write results tor.
count(p, itr) → Integer¶Count the number of elements in
itrfor which predicatepreturnstrue.
any(p, itr) → BoolDetermine whether predicate
preturnstruefor any elements ofitr.
all(p, itr) → BoolDetermine whether predicate
preturnstruefor all elements ofitr.julia>all(i->(4<=i<=6),[4,5,6])true
map(f, c...) → collection¶Transform collection
cby applyingfto each element. For multiple collection arguments, applyfelementwise.julia>map((x)->x*2,[1,2,3])3-elementArray{Int64,1}:246julia>map(+,[1,2,3],[10,20,30])3-elementArray{Int64,1}:112233
map!(function, destination, collection...)Like
map(), but stores the result indestinationrather than a new collection.destinationmust be at least as large as the first collection.
mapreduce(f, op, v0, itr)¶Apply function
fto each element initr, and then reduce the result using the binary functionop.v0must be a neutral element foropthat will be returned for empty collections. It is unspecified whetherv0is used for non-empty collections.mapreduce()is functionally equivalent to callingreduce(op,v0,map(f,itr)), but will in general execute faster since no intermediate collection needs to be created. See documentation forreduce()andmap().julia>mapreduce(x->x^2,+,[1:3;])# == 1 + 4 + 914
The associativity of the reduction is implementation-dependent. Additionally, some implementations may reuse the return value of
ffor elements that appear multiple times initr. Usemapfoldl()ormapfoldr()instead for guaranteed left or right associativity and invocation offfor every value.
mapreduce(f, op, itr)Like
mapreduce(f,op,v0,itr). In general, this cannot be used with empty collections (seereduce(op,itr)).
mapfoldl(f, op, v0, itr)¶Like
mapreduce(), but with guaranteed left associativity.v0will be used exactly once.
mapfoldl(f, op, itr)Like
mapfoldl(f,op,v0,itr), but using the first element ofitrasv0. In general, this cannot be used with empty collections (seereduce(op,itr)).
mapfoldr(f, op, v0, itr)¶Like
mapreduce(), but with guaranteed right associativity.v0will be used exactly once.
mapfoldr(f, op, itr)Like
mapfoldr(f,op,v0,itr), but using the first element ofitrasv0. In general, this cannot be used with empty collections (seereduce(op,itr)).
first(coll)¶Get the first element of an iterable collection. Returns the start point of a
Rangeeven if it is empty.
last(coll)¶Get the last element of an ordered collection, if it can be computed in O(1) time. This is accomplished by calling
endof()to get the last index. Returns the end point of aRangeeven if it is empty.
step(r)¶Get the step size of a
Rangeobject.
collect(collection)¶Return an array of all items in a collection. For associative collections, returns Pair{KeyType, ValType}.
collect(element_type, collection)Return an array of type
Array{element_type,1}of all items in a collection.
issubset(a, b)¶⊆(a, b) → Bool¶⊈(a, b) → Bool¶⊊(a, b) → Bool¶Determine whether every element of
ais also inb, usingin().
filter(function, collection)¶Return a copy of
collection, removing elements for whichfunctionisfalse. For associative collections, the function is passed two arguments (key and value).
filter!(function, collection)¶Update
collection, removing elements for whichfunctionisfalse. For associative collections, the function is passed two arguments (key and value).
Indexable Collections¶
getindex(collection, key...)¶Retrieve the value(s) stored at the given key or index within a collection. The syntax
a[i,j,...]is converted by the compiler togetindex(a,i,j,...).
setindex!(collection, value, key...)¶Store the given value at the given key or index within a collection. The syntax
a[i,j,...]=xis converted by the compiler to(setindex!(a,x,i,j,...);x).
Fully implemented by:
Partially implemented by:
RangeUnitRangeTuple
Associative Collections¶
Dict is the standard associative collection. Its implementation uses hash() as the hashing function for the key, and isequal() to determine equality. Define these two functions for custom types to override how they are stored in a hash table.
ObjectIdDict is a special hash table where the keys are always object identities.
WeakKeyDict is a hash table implementation where the keys are weak references to objects, and thus may be garbage collected even when referenced in a hash table.
Dicts can be created by passing pair objects constructed with =>() to a Dict constructor: Dict("A"=>1,"B"=>2). This call will attempt to infer type information from the keys and values (i.e. this example creates a Dict{ASCIIString,Int64}).
To explicitly specify types use the syntax Dict{KeyType,ValueType}(...).
For example, Dict{ASCIIString,Int32}("A"=>1,"B"=>2).
As with Arrays, Dicts may be created with comprehensions. For example,
[i=>f(i)fori=1:10].
Given a dictionary D, the syntax D[x] returns the value of key x (if it exists) or throws an error, and D[x]=y stores the key-value pair x=>y in D (replacing any existing value for the key x). Multiple arguments to D[...] are converted to tuples; for example, the syntax D[x,y] is equivalent to D[(x,y)], i.e. it refers to the value keyed by the tuple (x,y).
Dict([itr])¶Dict{K,V}()constructs a hash table with keys of typeKand values of typeV.Given a single iterable argument, constructs a
Dictwhose key-value pairs are taken from 2-tuples(key,value)generated by the argument.julia>Dict([("A",1),("B",2)])Dict{ASCIIString,Int64}with2entries:"B"=>2"A"=>1
Alternatively, a sequence of pair arguments may be passed.
julia>Dict("A"=>1,"B"=>2)Dict{ASCIIString,Int64}with2entries:"B"=>2"A"=>1
haskey(collection, key) → Bool¶Determine whether a collection has a mapping for a given key.
get(collection, key, default)¶Return the value stored for the given key, or the given default value if no mapping for the key is present.
get(f::Function, collection, key)Return the value stored for the given key, or if no mapping for the key is present, return
f(). Useget!()to also store the default value in the dictionary.This is intended to be called using
doblock syntax:get(dict,key)do# default value calculated heretime()end
get!(collection, key, default)¶Return the value stored for the given key, or if no mapping for the key is present, store
key=>default, and returndefault.
get!(f::Function, collection, key)Return the value stored for the given key, or if no mapping for the key is present, store
key=>f(), and returnf().This is intended to be called using
doblock syntax:get!(dict,key)do# default value calculated heretime()end
getkey(collection, key, default)¶Return the key matching argument
keyif one exists incollection, otherwise returndefault.
delete!(collection, key)¶Delete the mapping for the given key in a collection, and return the collection.
pop!(collection, key[, default])¶Delete and return the mapping for
keyif it exists incollection, otherwise returndefault, or throw an error if default is not specified.
keys(collection)¶Return an iterator over all keys in a collection.
collect(keys(d))returns an array of keys.
values(collection)¶Return an iterator over all values in a collection.
collect(values(d))returns an array of values.
merge(collection, others...)¶Construct a merged collection from the given collections. If necessary, the types of the resulting collection will be promoted to accommodate the types of the merged collections. If the same key is present in another collection, the value for that key will be the value it has in the last collection listed.
julia>a=Dict("foo"=>0.0,"bar"=>42.0)Dict{ASCIIString,Float64}with2entries:"bar"=>42.0"foo"=>0.0julia>b=Dict(utf8("baz")=>17,utf8("bar")=>4711)Dict{UTF8String,Int64}with2entries:"bar"=>4711"baz"=>17julia>merge(a,b)Dict{UTF8String,Float64}with3entries:"bar"=>4711.0"baz"=>17.0"foo"=>0.0julia>merge(b,a)Dict{UTF8String,Float64}with3entries:"bar"=>42.0"baz"=>17.0"foo"=>0.0
merge!(collection, others...)¶Update collection with pairs from the other collections
sizehint!(s, n)¶Suggest that collection
sreserve capacity for at leastnelements. This can improve performance.
keytype(collection)¶For associative collection types, this will be the type of the Key, This is not defined for non-associative collections
valtype(collection)¶For associative collection types, this will be the type of the Value, This is not defined for non-associative collections
Fully implemented by:
ObjectIdDictDictWeakKeyDict
Partially implemented by:
Set-Like Collections¶
Set([itr])¶Construct a
Setof the values generated by the given iterable object, or an empty set. Should be used instead ofIntSetfor sparse integer sets, or for sets of arbitrary objects.
IntSet([itr])¶Construct a sorted set of positive
Ints generated by the given iterable object, or an empty set. Implemented as a bit string, and therefore designed for dense integer sets. OnlyInts greater than 0 can be stored. If the set will be sparse (for example holding a few very large integers), useSetinstead.
union!(s, iterable)¶Union each element of
iterableinto setsin-place.
intersect(s1, s2...)¶∩(s1, s2)¶Construct the intersection of two or more sets. Maintains order and multiplicity of the first argument for arrays and ranges.
setdiff(s1, s2)¶Construct the set of elements in
s1but nots2. Maintains order with arrays. Note that both arguments must be collections, and both will be iterated over. In particular,setdiff(set,element)whereelementis a potential member ofset, will not work in general.
setdiff!(s, iterable)¶Remove each element of
iterablefrom setsin-place.
symdiff(s1, s2...)¶Construct the symmetric difference of elements in the passed in sets or arrays. Maintains order with arrays.
symdiff!(s, n)¶The set
sis destructively modified to toggle the inclusion of integern.
symdiff!(s, itr)For each element in
itr, destructively toggle its inclusion in sets.
symdiff!(s1, s2)Construct the symmetric difference of sets
s1ands2, storing the result ins1.
intersect!(s1, s2)¶Intersects sets
s1ands2and overwrites the sets1with the result. If needed,s1will be expanded to the size ofs2.
issubset(A, S) → Bool⊆(A, S) → BoolReturn
trueifAis a subset of or equal toS.
Fully implemented by:
Partially implemented by:
Dequeues¶
push!(collection, items...) → collection¶Insert one or more
itemsat the end ofcollection.julia>push!([1,2,3],4,5,6)6-elementArray{Int64,1}:123456
Use
append!()to add all the elements of another collection tocollection. The result of the preceding example is equivalent toappend!([1,2,3],[4,5,6]).
pop!(collection) → itemRemove the last item in
collectionand return it.julia>A=[1,2,3,4,5,6]6-elementArray{Int64,1}:123456julia>pop!(A)6julia>A5-elementArray{Int64,1}:12345
unshift!(collection, items...) → collection¶Insert one or more
itemsat the beginning ofcollection.julia>unshift!([1,2,3,4],5,6)6-elementArray{Int64,1}:561234
shift!(collection) → item¶Remove the first
itemfromcollection.julia>A=[1,2,3,4,5,6]6-elementArray{Int64,1}:123456julia>shift!(A)1julia>A5-elementArray{Int64,1}:23456
insert!(collection, index, item)¶Insert an
itemintocollectionat the givenindex.indexis the index ofitemin the resultingcollection.julia>insert!([6,5,4,2,1],4,3)6-elementArray{Int64,1}:654321
deleteat!(collection, index)¶Remove the item at the given
indexand return the modifiedcollection. Subsequent items are shifted to fill the resulting gap.julia>deleteat!([6,5,4,3,2,1],2)5-elementArray{Int64,1}:64321
deleteat!(collection, itr)Remove the items at the indices given by
itr, and return the modifiedcollection. Subsequent items are shifted to fill the resulting gap.itrmust be sorted and unique.julia>deleteat!([6,5,4,3,2,1],1:2:5)3-elementArray{Int64,1}:531julia>deleteat!([6,5,4,3,2,1],(2,2))ERROR:ArgumentError:indicesmustbeuniqueandsortedindeleteat!atarray.jl:547
splice!(collection, index[, replacement]) → item¶Remove the item at the given index, and return the removed item. Subsequent items are shifted down to fill the resulting gap. If specified, replacement values from an ordered collection will be spliced in place of the removed item.
julia>A=[6,5,4,3,2,1];splice!(A,5)2julia>A5-elementArray{Int64,1}:65431julia>splice!(A,5,-1)1julia>A5-elementArray{Int64,1}:6543-1julia>splice!(A,1,[-1,-2,-3])6julia>A7-elementArray{Int64,1}:-1-2-3543-1
To insert
replacementbefore an indexnwithout removing any items, usesplice!(collection,n:n-1,replacement).
splice!(collection, range[, replacement]) → itemsRemove items in the specified index range, and return a collection containing the removed items. Subsequent items are shifted down to fill the resulting gap. If specified, replacement values from an ordered collection will be spliced in place of the removed items.
To insert
replacementbefore an indexnwithout removing any items, usesplice!(collection,n:n-1,replacement).julia>splice!(A,4:3,2)0-elementArray{Int64,1}julia>A8-elementArray{Int64,1}:-1-2-32543-1
resize!(collection, n) → collection¶Resize
collectionto containnelements. Ifnis smaller than the current collection length, the firstnelements will be retained. Ifnis larger, the new elements are not guaranteed to be initialized.julia>resize!([6,5,4,3,2,1],3)3-elementArray{Int64,1}:654
julia>resize!([6,5,4,3,2,1],8)8-elementArray{Int64,1}:65432100
append!(collection, collection2) → collection.¶Add the elements of
collection2to the end ofcollection.julia>append!([1],[2,3])3-elementArray{Int64,1}:123
julia>append!([1,2,3],[4,5,6])6-elementArray{Int64,1}:123456
Use
push!()to add individual items tocollectionwhich are not already themselves in another collection. The result is of the preceding example is equivalent topush!([1,2,3],4,5,6).
prepend!(collection, items) → collection¶Insert the elements of
itemsto the beginning ofcollection.julia>prepend!([3],[1,2])3-elementArray{Int64,1}:123
Fully implemented by:
Vector(a.k.a. 1-dimensionalArray)BitVector(a.k.a. 1-dimensionalBitArray)
PriorityQueue¶
The PriorityQueue type is available from the Collections module. It provides
a basic priority queue implementation allowing for arbitrary key and priority types.
Multiple identical keys are not permitted, but the priority of existing keys can be
changed efficiently.
PriorityQueue(K, V[, ord])¶Construct a new
PriorityQueue, with keys of typeKand values/priorites of typeV. If an order is not given, the priority queue is min-ordered using the default comparison forV.
enqueue!(pq, k, v)¶Insert the a key
kinto a priority queuepqwith priorityv.
dequeue!(pq)¶Remove and return the lowest priority key from a priority queue.
peek(pq)¶Return the lowest priority key from a priority queue without removing that key from the queue.
PriorityQueue also behaves similarly to a Dict in that keys can be
inserted and priorities accessed or changed using indexing notation.
julia># Julia codepq=Collections.PriorityQueue();julia># Insert keys with associated prioritiespq["a"]=10;pq["b"]=5;pq["c"]=15;pqBase.Collections.PriorityQueue{Any,Any,Base.Order.ForwardOrdering}with3entries:"c"=>15"b"=>5"a"=>10julia># Change the priority of an existing keypq["a"]=0;pqBase.Collections.PriorityQueue{Any,Any,Base.Order.ForwardOrdering}with3entries:"c"=>15"b"=>5"a"=>0Heap Functions¶
Along with the PriorityQueue type, the Collections module provides
lower level functions for performing binary heap operations on arrays. Each
function takes an optional ordering argument. If not given, default ordering
is used, so that elements popped from the heap are given in ascending order.
heapify(v[, ord])¶Return a new vector in binary heap order, optionally using the given ordering.
isheap(v[, ord])¶Return
trueiff an array is heap-ordered according to the given order.
heappush!(v, x[, ord])¶Given a binary heap-ordered array, push a new element
x, preserving the heap property. For efficiency, this function does not check that the array is indeed heap-ordered.
heappop!(v[, ord])¶Given a binary heap-ordered array, remove and return the lowest ordered element. For efficiency, this function does not check that the array is indeed heap-ordered.